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1 Introduction

This report is intended to serve as a companion document to the User Documentation of
cvode [1]. It provides details, with listings, on the example programs supplied with the
cvode distribution package.

The cvode distribution contains examples of four types: serial C examples, parallel C

examples, and serial and parallel Fortran examples. With the exception of ”demo”-type
example files, the names of all the examples distributed with sundials are of the form
[slv][PbName]_[ls]_[prec]_[p], where

[slv] identifies the solver (for cvode examples this is cv, while for fcvode examples, this is
fcv);

[PbName] identifies the problem;

[ls] identifies the linear solver module used (for examples using functional iterations for the
nonlinear system solver, non specifies that no linear solver was used);

[prec] indicates the cvode preconditioner module used, bp for cvbandpre or bbd for cvbb-

dpre (only if applicable, for examples using a Krylov linear solver);

[p] indicates an example using the parallel vector module nvector parallel.

The following lists summarize all examples distributed with cvode.

Supplied in the srcdir/examples/cvode/serial directory are the following ten serial exam-
ples (using the nvector serial module):

• cvRoberts dns solves a chemical kinetics problem consisting of three rate equations.
This program solves the problem with the BDF method and Newton iteration, with the
cvdense linear solver and a user-supplied Jacobian routine. It also uses the rootfinding
feature of cvode.

• cvRoberts dnsL is the same as cvRoberts dns but uses the Lapack implementation of
cvdense.

• cvRoberts dns uw is the same as cvRoberts dns but demonstrates the user-supplied
error weight function feature of cvode.

• cvAdvDiff bnd solves the semi-discrete form of an advection-diffusion equation in 2-D.
This program solves the problem with the BDF method and Newton iteration, with
the cvband linear solver and a user-supplied Jacobian routine.

• cvAdvDiff bndL is the same as cvAdvDiff bnd but uses the Lapack implementation of
cvband.

• cvDiurnal kry solves the semi-discrete form of a two-species diurnal kinetics advection-
diffusion PDE system in 2-D.
The problem is solved with the BDF/GMRES method (i.e. using the cvspgmr linear
solver) and the block-diagonal part of the Newton matrix as a left preconditioner. A
copy of the block-diagonal part of the Jacobian is saved and conditionally reused within
the preconditioner setup routine.
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• cvDiurnal kry bp solves the same problem as cvDiurnal kry, with the BDF/GMRES
method and a banded preconditioner, generated by difference quotients, using the mod-
ule cvbandpre.
The problem is solved twice: with preconditioning on the left, then on the right.

• cvDirectDemo ls is a demonstration program for cvode with direct linear solvers.
Two separate problems are solved using both the Adams and BDF linear multistep
methods in combination with functional and Newton iterations.
The first problem is the Van der Pol oscillator for which the Newton iteration cases use
the following types of Jacobian approximations: (1) dense, user-supplied, (2) dense,
difference-quotient approximation, (3) diagonal approximation. The second problem
is a linear ODE with a banded lower triangular matrix derived from a 2-D advection
PDE. In this case, the Newton iteration cases use the following types of Jacobian ap-
proximation: (1) banded, user-supplied, (2) banded, difference-quotient approximation,
(3) diagonal approximation.

• cvKrylovDemo ls solves the same problem as cvDiurnal kry, with the BDF method,
but with three Krylov linear solvers: cvspgmr, cvspbcg, and cvsptfqmr.

• cvKrylovDemo prec is a demonstration program with the GMRES linear solver.
This program solves a stiff ODE system that arises from a system of partial differential
equations. The PDE system is a six-species food web population model, with predator-
prey interaction and diffusion on the unit square in two dimensions.
The ODE system is solved using Newton iteration and the cvspgmr linear solver (scaled
preconditioned GMRES).
The preconditioner matrix used is the product of two matrices: (1) a matrix, only
defined implicitly, based on a fixed number of Gauss-Seidel iterations using the diffusion
terms only; and (2) a block-diagonal matrix based on the partial derivatives of the
interaction terms only, using block-grouping.
Four different runs are made for this problem. The product preconditoner is applied on
the left and on the right. In each case, both the modified and classical Gram-Schmidt
options are tested.

Supplied in the srcdir/examples/cvode/parallel directory are the following three parallel
examples (using the nvector parallel module):

• cvAdvDiff non p solves the semi-discrete form of a 1-D advection-diffusion equation.
This program solves the problem with the option for nonstiff systems, i.e. Adams
method and functional iteration.

• cvDiurnal kry p is a parallel implementation of cvDiurnal kry.

• cvDiurnal kry bbd p solves the same problem as cvDiurnal kry p, with BDF and the
GMRES linear solver, using a block-diagonal matrix with banded blocks as a precon-
ditioner, generated by difference quotients, using the module cvbbdpre.

Within the fcvode module, in the directories srcdir/examples/cvode/fcmix serial and
srcdir/examples/cvode/fcmix parallel, are the following examples for the Fortran-C
interface. The first five of these are serial, while the last three are parallel.
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• fcvRoberts dns is a serial chemical kinetics example (BDF/cvdense) with rootfinding.

• fcvRoberts dnsL is the same as fcvRoberts dns but uses the Lapack implementation
of cvdense.

• fcvAdvDiff bnd is a serial advection-diffusion example (BDF/cvband).

• fcvDiurnal kry is a serial kinetics-transport example (BDF/cvspgmr).

• fcvDiurnal kry bp is the fcvDiurnal kry example with fcvbp.

• fcvDiag non p is a nonstiff parallel diagonal ODE example (ADAMS/FUNCTIONAL).

• fcvDiag kry p is a stiff parallel diagonal ODE example (BDF/cvspgmr).

• fcvDiag kry bbd p is the same as the fcvDiag kry p example but using the fcvbbd

module.

In the following sections, we give detailed descriptions of some (but not all) of these examples.
We also give our output files for each of these examples, but users should be cautioned that
their results may differ slightly from these. Differences in solution values may differ within
the tolerances, and differences in cumulative counters, such as numbers of steps or Newton
iterations, may differ from one machine environment to another by as much as 10% to 20%.

The final section of this report describes a set of tests done with the parallel version of
CVODE, using a problem based on the cvDiurnal kry/cvDiurnal kry p example.

In the descriptions below, we make frequent references to the cvode User Document [1].
All citations to specific sections (e.g. §4.2) are references to parts of that User Document,
unless explicitly stated otherwise.

Note. The examples in the cvode distribution are written in such a way as to compile and
run for any combination of configuration options during the installation of sundials (see
Appendix A in the User Guide). As a consequence, they contain portions of code that will
not be typically present in a user program. For example, all C example programs make use
of the variables SUNDIALS EXTENDED PRECISION and SUNDIALS DOUBLE PRECISION to test
if the solver libraries were built in extended or double precision, and use the appropriate
conversion specifiers in printf functions. Similarly, the Fortran examples in fcvode are
automatically pre-processed to generate source code that corresponds to the manner in which
the cvode libraries were built (see 4 in this document for more details).
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2 Serial example problems

2.1 A dense example: cvRoberts dns

As an initial illustration of the use of the cvode package for the integration of IVP ODEs,
we give a sample program called cvRoberts dns.c. It uses the cvode dense linear solver
module cvdense and the nvector serial module (which provides a serial implementation
of nvector) in the solution of a 3-species chemical kinetics problem.

The problem consists of the following three rate equations:

ẏ1 = −0.04 · y1 + 104 · y2 · y3

ẏ2 = 0.04 · y1 − 104 · y2 · y3 − 3 · 107 · y2
2

ẏ3 = 3 · 107 · y2
2

(1)

on the interval t ∈ [0, 4 · 1010], with initial conditions y1(0) = 1.0, y2(0) = y3(0) = 0.0.
While integrating the system, we also use the rootfinding feature to find the points at which
y1 = 10−4 or at which y3 = 0.01.

For the source we give a rather detailed explanation of the parts of the program and their
interaction with cvode.

Following the initial comment block, this program has a number of #include lines, which
allow access to useful items in cvode header files. The sundials types.h file provides the
definition of the type realtype (see §4.2 for details). For now, it suffices to read realtype as
double. The cvode.h file provides prototypes for the cvode functions to be called (excluding
the linear solver selection function), and also a number of constants that are to be used in set-
ting input arguments and testing the return value of CVode. The cvode dense.h file provides
the prototype for the CVDense function. The nvector serial.h file is the header file for the
serial implementation of the nvector module and includes definitions of the N Vector type,
a macro to access vector components, and prototypes for the serial implementation specific
machine environment memory allocation and freeing functions. The sundials dense.h file
provides the definition of the dense matrix type DlsMat (type=1) and a macro for accessing
matrix elements. We have explicitly included sundials dense.h, but this is not necessary
because it is included by cvode dense.h.

This program includes two user-defined accessor macros, Ith and IJth, that are useful in
writing the problem functions in a form closely matching the mathematical description of the
ODE system, i.e. with components numbered from 1 instead of from 0. The Ith macro is used
to access components of a vector of type N Vector with a serial implementation. It is defined
using the nvector serial accessor macro NV Ith S which numbers components starting
with 0. The IJth macro is used to access elements of a dense matrix of type DlsMat. It is
defined using the dense accessor macro DENSE ELEM which numbers matrix rows and columns
starting with 0. The macro NV Ith S is fully described in §6.1. The macro DENSE ELEM is
fully described in §4.6.5.

Next, the program includes some problem-specific constants, which are isolated to this
early location to make it easy to change them as needed. The program prologue ends with
prototypes of four private helper functions and the three user-supplied functions that are
called by cvode.

The main program begins with some dimensions and type declarations, including use of
the type N Vector. The next several lines allocate memory for the y and abstol vectors
using N VNew Serial with a length argument of NEQ (= 3). The lines following that load
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the initial values of the dependendent variable vector into y and the absolute tolerances into
abstol using the Ith macro.

The calls to N VNew Serial, and also later calls to CVode*** functions, make use of a
private function, check flag, which examines the return value and prints a message if there
was a failure. The check flag function was written to be used for any serial sundials

application.
The call to CVodeCreate creates the cvode solver memory block, specifying the CV BDF

integration method with CV NEWTON iteration. Its return value is a pointer to that memory
block for this problem. In the case of failure, the return value is NULL. This pointer must be
passed in the remaining calls to cvode functions.

The call to CVodeInit allocates and initializes the solver memory block. Its arguments
include the name of the C function f defining the right-hand side function f(t, y), and the
initial values of t and y. The call to CVodeSVtolerances specifies a vector of absolute
tolerances, and includes the value of the relative tolerance reltol and the absolute tolerance
vector abstol. See §4.5.1 and §4.5.2 for full details of these calls.

The call to CVodeRootInit specifies that a rootfinding problem is to be solved along with
the integration of the ODE system, that the root functions are specified in the function g,
and that there are two such functions. Specifically, they are set to y1 − 0.0001 and y3 − 0.01,
respectively. See §4.5.4 for a detailed description of this call.

The calls to CVDense (see §4.5.3) and CVDlsSetDenseJacFn (see §4.5.6) specify the cv-

dense linear solver with an analytic Jacobian supplied by the user-supplied function Jac.
The actual solution of the ODE initial value problem is accomplished in the loop over

values of the output time tout. In each pass of the loop, the program calls CVode in the
CV NORMAL mode, meaning that the integrator is to take steps until it overshoots tout and
then interpolate to t =tout, putting the computed value of y(tout) into y, with t = tout.
The return value in this case is CV SUCCESS. However, if CVode finds a root before reaching
the next value of tout, it returns CV ROOT RETURN and stores the root location in t and the
solution there in y. In either case, the program prints t and y. In the case of a root, it calls
CVodeGetRootInfo to get a length-2 array rootsfound of bits showing which root function
was found to have a root. If CVode returned any negative value (indicating a failure), the
program breaks out of the loop. In the case of a CV SUCCESS return, the value of tout is
advanced (multiplied by 10) and a counter (iout) is advanced, so that the loop can be ended
when that counter reaches the preset number of output times, NOUT = 12. See §4.5.5 for full
details of the call to CVode.

Finally, the main program calls PrintFinalStats to get and print all of the relevant sta-
tistical quantities. It then calls NV Destroy to free the vectors y and abstol, and CVodeFree

to free the cvode memory block.
The function PrintFinalStats used here is actually suitable for general use in applica-

tions of cvode to any problem with a dense Jacobian. It calls various CVodeGet*** and
CVDenseGet*** functions to obtain the relevant counters, and then prints them. Specifi-
cally, these are: the cumulative number of steps (nst), the number of f evaluations (nfe)
(excluding those for difference-quotient Jacobian evaluations), the number of matrix factor-
izations (nsetups), the number of f evaluations for Jacobian evaluations (nfeLS = 0 here),
the number of Jacobian evaluations (nje), the number of nonlinear (Newton) iterations (nni),
the number of nonlinear convergence failures (ncfn), the number of local error test failures
(netf), and the number of g (root function) evaluations (nge). These optional outputs are
described in §4.5.8.

The function f is a straightforward expression of the ODEs. It uses the user-defined
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macro Ith to extract the components of y and to load the components of ydot. See §4.6.1
for a detailed specification of f.

Similarly, the function g defines the two functions, g0 and g1, whose roots are to be found.
See §4.6.4 for a detailed description of the g function.

The function Jac sets the nonzero elements of the Jacobian as a dense matrix. (Zero
elements need not be set because J is preset to zero.) It uses the user-defined macro IJth to
reference the elements of a dense matrix of type DlsMat. Here the problem size is small, so we
need not worry about the inefficiency of using NV Ith S and DENSE ELEM to access N Vector

and DlsMat elements. Note that in this example, Jac only accesses the y and J arguments.
See §4.6.5 for a detailed description of the dense Jac function.

The output generated by cvRoberts dns is shown below. It shows the output values at
the 12 preset values of tout. It also shows the two root locations found, first at a root of g1,
and then at a root of g0.

cvRoberts dns sample output

3-species kinetics problem

At t = 2.6391e-01 y = 9.899653e-01 3.470564e-05 1.000000e-02

rootsfound [] = 0 1

At t = 4.0000e-01 y = 9.851641e-01 3.386242e-05 1.480205e-02

At t = 4.0000e+00 y = 9.055097e-01 2.240338e-05 9.446793e-02

At t = 4.0000e+01 y = 7.158009e-01 9.185098e-06 2.841900e-01

At t = 4.0000e+02 y = 4.505440e-01 3.223217e-06 5.494528e-01

At t = 4.0000e+03 y = 1.831964e-01 8.942051e-07 8.168027e-01

At t = 4.0000e+04 y = 3.898104e-02 1.621656e-07 9.610188e-01

At t = 4.0000e+05 y = 4.938672e-03 1.985172e-08 9.950613e-01

At t = 4.0000e+06 y = 5.166093e-04 2.067499e-09 9.994834e-01

At t = 2.0800e+07 y = 1.000000e-04 4.000395e-10 9.999000e-01

rootsfound [] = -1 0

At t = 4.0000e+07 y = 5.206409e-05 2.082671e-10 9.999479e-01

At t = 4.0000e+08 y = 5.211241e-06 2.084507e-11 9.999948e-01

At t = 4.0000e+09 y = 5.200520e-07 2.080209e-12 9.999995e-01

At t = 4.0000e+10 y = 5.699485e-08 2.279794e-13 9.999999e-01

Final Statistics:

nst = 579 nfe = 817 nsetups = 118 nfeLS = 0 nje = 12

nni = 813 ncfn = 0 netf = 31 nge = 615

2.2 A banded example: cvAdvDiff bnd

The example program cvAdvDiff bnd.c solves the semi-discretized form of the 2-D advection-
diffusion equation

∂v/∂t = ∂2v/∂x2 + .5∂v/∂x + ∂2v/∂y2 (2)

on a rectangle, with zero Dirichlet boundary conditions. The PDE is discretized with standard
central finite differences on a (MX+2) × (MY+2) mesh, giving an ODE system of size MX*MY.
The discrete value vij approximates v at x = i∆x, y = j∆y. The ODEs are

dvij

dt
= fij =

vi−1,j − 2vij + vi+1,j

(∆x)2
+ .5

vi+1,j − vi−1,j

2∆x
+

vi,j−1 − 2vij + vi,j+1

(∆y)2
, (3)
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where 1 ≤ i ≤MX and 1 ≤ j ≤MY. The boundary conditions are imposed by taking vij = 0
above if i = 0 or MX+1, or if j = 0 or MY+1. If we set u(j−1)+(i−1)∗MY = vij , so that the ODE
system is u̇ = f(u), then the system Jacobian J = ∂f/∂u is a band matrix with upper and
lower half-bandwidths both equal to MY. In the example, we take MX = 10 and MY = 5.

The cvAdvDiff bnd.c program includes files cvode band.h and sundials band.h in or-
der to use the cvband linear solver. The cvode band.h file contains the prototype for
the CVBand routine. The sundials band.h file contains the definition for band matrix type
DlsMat (type=2) and the BAND COL and BAND COL ELEM macros for accessing matrix elements
(see §8.1.4). We have explicitly included sundials band.h, but this is not necessary because
it is included by cvode band.h. The file nvector serial.h is included for the definition of
the serial N Vector type.

The include lines at the top of the file are followed by definitions of problem constants
which include the x and y mesh dimensions, MX and MY, the number of equations NEQ, the
scalar absolute tolerance ATOL, the initial time T0, and the initial output time T1.

Spatial discretization of the PDE naturally produces an ODE system in which equations
are numbered by mesh coordinates (i, j). The user-defined macro IJth isolates the translation
for the mathematical two-dimensional index to the one-dimensional N Vector index and
allows the user to write clean, readable code to access components of the dependent variable.
The NV DATA S macro returns the component array for a given N Vector, and this array is
passed to IJth in order to do the actual N Vector access.

The type UserData is a pointer to a structure containing problem data used in the f

and Jac functions. This structure is allocated and initialized at the beginning of main. The
pointer to it, called data, is passed to CVodeSetUserData, and as a result it will be passed
back to the f and Jac functions each time they are called. The use of the data pointer
eliminates the need for global program data.

The main program is straightforward. The CVodeCreate call specifies the CV BDF method
with a CV NEWTON iteration. Following the CVodeInit call, the call to CVodeSStolerances

indicates scalar relative and absolute tolerances, and values reltol and abstol are passed.
The call to CVBand (see §4.5.3) specifies the cvband linear solver, and specifies that both
half-bandwidths of the Jacobian are equal to MY. The call to CVDlsSetBandJacFn (see §4.5.6)
specifies that a user-supplied Jacobian function Jac is to be used.

The actual solution of the problem is performed by the call to CVode within the loop over
the output times tout. The max-norm of the solution vector (from a call to N VMaxNorm)
and the cumulative number of time steps (from a call to CVodeGetNumSteps) are printed at
each output time. Finally, the calls to PrintFinalStats, N VDestroy, and CVodeFree print
statistics and free problem memory.

Following the main program in the cvAdvDiff bnd.c file are definitions of five functions:
f, Jac, SetIC, PrintHeader, PrintOutput, PrintFinalStats, and check flag. The last
five functions are called only from within the cvAdvDiff bnd.c file. The SetIC function sets
the initial dependent variable vector; PrintHeader prints the heading of the output page;
PrintOutput prints a line of solution output; PrintFinalStats gets and prints statistics at
the end of the run; and check flag aids in checking return values. The statistics printed
include counters such as the total number of steps (nst), f evaluations (excluding those
for Jaobian evaluations) (nfe), LU decompositions (nsetups), f evaluations for difference-
quotient Jacobians (nfeLS = 0 here), Jacobian evaluations (nje), and nonlinear iterations
(nni). These optional outputs are described in §4.5.8. Note that PrintFinalStats is suitable
for general use in applications of cvode to any problem with a banded Jacobian.

The f function implements the central difference approximation (3) with u identically zero
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on the boundary. The constant coefficients (∆x)−2, .5(2∆x)−1, and (∆y)−2 are computed
only once at the beginning of main, and stored in the locations data->hdcoef, data->hacoef,
and data->vdcoef, respectively. When f receives the data pointer (renamed user data

here), it pulls out these values from storage in the local variables hordc, horac, and verdc.
It then uses these to construct the diffusion and advection terms, which are combined to form
udot. Note the extra lines setting out-of-bounds values of u to zero.

The Jac function is an expression of the derivatives

∂fij/∂vij = −2[(∆x)−2 + (∆y)−2]

∂fij/∂vi±1,j = (∆x)−2 ± .5(2∆x)−1, ∂fij/∂vi,j±1 = (∆y)−2 .

This function loads the Jacobian by columns, and like f it makes use of the preset coefficients
in data. It loops over the mesh points (i,j). For each such mesh point, the one-dimensional
index k = j-1 + (i-1)*MY is computed and the kth column of the Jacobian matrix J is
set. The row index k′ of each component fi′,j′ that depends on vi,j must be identified in
order to load the corresponding element. The elements are loaded with the BAND COL ELEM

macro. Note that the formula for the global index k implies that decreasing (increasing)
i by 1 corresponds to decreasing (increasing) k by MY, while decreasing (increasing) j by 1
corresponds of decreasing (increasing) k by 1. These statements are reflected in the arguments
to BAND COL ELEM. The first argument passed to the BAND COL ELEM macro is a pointer to the
diagonal element in the column to be accessed. This pointer is obtained via a call to the
BAND COL macro and is stored in kthCol in the Jac function. When setting the components
of J we must be careful not to index out of bounds. The guards (i != 1) etc. in front of
the calls to BAND COL ELEM prevent illegal indexing. See §4.6.6 for a detailed description of
the banded Jac function.

The output generated by cvAdvDiff bnd is shown below.

cvAdvDiff bnd sample output

2-D Advection -Diffusion Equation

Mesh dimensions = 10 X 5

Total system size = 50

Tolerance parameters: reltol = 0 abstol = 1e-05

At t = 0 max.norm(u) = 8.954716e+01

At t = 0.10 max.norm(u) = 4.132889e+00 nst = 85

At t = 0.20 max.norm(u) = 1.039294e+00 nst = 103

At t = 0.30 max.norm(u) = 2.979829e-01 nst = 113

At t = 0.40 max.norm(u) = 8.765774e-02 nst = 120

At t = 0.50 max.norm(u) = 2.625637e-02 nst = 126

At t = 0.60 max.norm(u) = 7.830425e-03 nst = 130

At t = 0.70 max.norm(u) = 2.329387e-03 nst = 134

At t = 0.80 max.norm(u) = 6.953434e-04 nst = 137

At t = 0.90 max.norm(u) = 2.115983e-04 nst = 140

At t = 1.00 max.norm(u) = 6.556853e-05 nst = 142

Final Statistics:

nst = 142 nfe = 174 nsetups = 23 nfeLS = 0 nje = 3

nni = 170 ncfn = 0 netf = 3
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2.3 A Krylov example: cvDiurnal kry

We give here an example that illustrates the use of cvode with the Krylov method spgmr,
in the cvspgmr module, as the linear system solver.

This program solves the semi-discretized form of a pair of kinetics-advection-diffusion par-
tial differential equations, which represent a simplified model for the transport, production,
and loss of ozone and the oxygen singlet in the upper atmosphere. The problem includes non-
linear diurnal kinetics, horizontal advection and diffusion, and nonuniform vertical diffusion.
The PDEs can be written as

∂ci

∂t
= Kh

∂2ci

∂x2
+ V

∂ci

∂x
+

∂

∂y
Kv(y)

∂ci

∂y
+ Ri(c1, c2, t) (i = 1, 2) , (4)

where the superscripts i are used to distinguish the two chemical species, and where the
reaction terms are given by

R1(c1, c2, t) = −q1c
1c3 − q2c

1c2 + 2q3(t)c
3 + q4(t)c

2 ,

R2(c1, c2, t) = q1c
1c3 − q2c

1c2 − q4(t)c
2 .

(5)

The spatial domain is 0 ≤ x ≤ 20, 30 ≤ y ≤ 50 (in km). The various constants and
parameters are: Kh = 4.0 · 10−6, V = 10−3, Kv = 10−8 exp(y/5), q1 = 1.63 · 10−16, q2 =
4.66 · 10−16, c3 = 3.7 · 1016, and the diurnal rate constants are defined as:

qi(t) =

{

exp[−ai/ sinωt], for sinωt > 0
0, for sinωt ≤ 0

}

(i = 3, 4) ,

where ω = π/43200, a3 = 22.62, a4 = 7.601. The time interval of integration is [0, 86400],
representing 24 hours measured in seconds.

Homogeneous Neumann boundary conditions are imposed on each boundary, and the
initial conditions are

c1(x, y, 0) = 106α(x)β(y) , c2(x, y, 0) = 1012α(x)β(y) ,

α(x) = 1 − (0.1x − 1)2 + (0.1x − 1)4/2 ,

β(y) = 1 − (0.1y − 4)2 + (0.1y − 4)4/2 .

(6)

For this example, the equations (4) are discretized spatially with standard central finite
differences on a 10 × 10 mesh, giving an ODE system of size 200.

Among the initial #include lines in this case are lines to include cvode spgmr.h and
sundials math.h. The first contains constants and function prototypes associated with the
spgmr method, including the values of the pretype argument to CVSpgmr. The inclusion of
sundials math.h is done to access the SQR macro for the square of a realtype number.

The main program calls CVodeCreate specifying the CV BDF method and CV NEWTON it-
eration, and then calls CVodeInit, and CVodeSetSStolerances specifies the scalar toler-
ances. It calls CVSpgmr (see §4.5.3) to specify the cvspgmr linear solver with left pre-
conditioning, and the default value (indicated by a zero argument) for maxl. The call
to CVSpilsSetJacTimesVecFn specifies a user-supplied function for Jacobian-vector prod-
ucts. The Gram-Schmidt orthogonalization is set to MODIFIED GS through the function
CVSpilsSetGSType. Next, user-supplied preconditioner setup and solve functions, Precond
and PSolve, are specified. See §4.5.6 for details on the CVSpilsSetPreconditioner function.

For a sequence of tout values, CVode is called in the CV NORMAL mode, sampled output
is printed, and the return value is tested for error conditions. After that, PrintFinalStats
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is called to get and print final statistics, and memory is freed by calls to N VDestroy,
FreeUserData, and CVodeFree. The printed statistics include various counters, such as
the total numbers of steps (nst), of f evaluations (excluding those for Jv product evalua-
tions) (nfe), of f evaluations for Jv evaluations (nfeLS), of nonlinear iterations (nni), of
linear (Krylov) iterations (nli), of preconditioner setups (nsetups), of preconditioner evalu-
ations (npe), and of preconditioner solves (nps), among others. Also printed are the lengths
of the problem-dependent real and integer workspaces used by the main integrator CVode,
denoted lenrw and leniw, and those used by cvspgmr, denoted lenrwLS and leniwLS. All
of these optional outputs are described in §4.5.8. The PrintFinalStats function is suitable
for general use in applications of cvode to any problem with the spgmr linear solver.

Mathematically, the dependent variable has three dimensions: species number, x mesh
point, and y mesh point. But in nvector serial, a vector of type N Vector works with a
one-dimensional contiguous array of data components. The macro IJKth isolates the transla-
tion from three dimensions to one. Its use results in clearer code and makes it easy to change
the underlying layout of the three-dimensional data. Here the problem size is 200, so we use
the NV DATA S macro for efficient N Vector access. The NV DATA S macro gives a pointer to
the first component of an N Vector which we pass to the IJKth macro to do an N Vector

access.
The preconditioner used here is the block-diagonal part of the true Newton matrix. It

is generated and factored in the Precond routine (see §4.6.9) and backsolved in the PSolve

routine (see §4.6.8). Its diagonal blocks are 2 × 2 matrices that include the interaction
Jacobian elements and the diagonal contribution of the diffusion Jacobian elements. The
block-diagonal part of the Jacobian itself, Jbd, is saved in separate storage each time it is
generated, on calls to Precond with jok == FALSE. On calls with jok == TRUE, signifying
that saved Jacobian data can be reused, the preconditioner P = I − γJbd is formed from the
saved matrix Jbd and factored. (A call to Precond with jok == TRUE can only occur after
a prior call with jok == FALSE.) The Precond routine must also set the value of jcur, i.e.
*jcurPtr, to TRUE when Jbd is re-evaluated, and FALSE otherwise, to inform cvspgmr of the
status of Jacobian data.

We need to take a brief detour to explain one last important aspect of this program. The
generic dense solver contains two sets of functions: one for “large” matrices and one for
“small” matrices. The large dense functions work with the type DlsMat (type=1), while the
small dense functions work with realtype ** as the underlying dense matrix types. The
cvdense linear solver uses the type DlsMat for the N ×N dense Jacobian and Newton ma-
trices, and calls the large matrix functions. But to avoid the extra layer of function calls,
cvDiurnal kry.c uses the small dense functions for all operations on the 2 × 2 precondi-
tioner blocks. Thus it includes sundials smalldense.h (by way of sundials dense.h), and
calls the small dense matrix functions newDenseMat, newIntArray, denseCopy, denseScale,
denseAddI, denseGETRF, and denseGETRS. The macro IJth defined near the top of the file
is used to access individual elements in each preconditioner block, numbered from 1. The
small dense functions are available for cvode user programs generally, and are documented
in §8.1.3.

In addition to the functions called by cvode, cvDiurnal kry.c includes definitions of
several private functions. These are: AllocUserData to allocate space for Jbd, P , and the
pivot arrays; InitUserData to load problem constants in the data block; FreeUserData to
free that block; SetInitialProfiles to load the initial values in y; PrintOutput to retreive
and print selected solution values and statistics; PrintFinalStats to print statistics; and
check flag to check return values for error conditions.
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The output generated by cvDiurnal kry.c is shown below. Note that the number of
preconditioner evaluations, npe, is much smaller than the number of preconditioner setups,
nsetups, as a result of the Jacobian re-use scheme.

cvDiurnal dns sample output

2-species diurnal advection -diffusion problem

t = 7.20e+03 no. steps = 219 order = 5 stepsize = 1.59e+02

c1 (bot.left/middle/top rt.) = 1.047e+04 2.964e+04 1.119e+04

c2 (bot.left/middle/top rt.) = 2.527e+11 7.154e+11 2.700e+11

t = 1.44e+04 no. steps = 251 order = 5 stepsize = 3.77e+02

c1 (bot.left/middle/top rt.) = 6.659e+06 5.316e+06 7.301e+06

c2 (bot.left/middle/top rt.) = 2.582e+11 2.057e+11 2.833e+11

t = 2.16e+04 no. steps = 277 order = 5 stepsize = 2.75e+02

c1 (bot.left/middle/top rt.) = 2.665e+07 1.036e+07 2.931e+07

c2 (bot.left/middle/top rt.) = 2.993e+11 1.028e+11 3.313e+11

t = 2.88e+04 no. steps = 301 order = 5 stepsize = 3.87e+02

c1 (bot.left/middle/top rt.) = 8.702e+06 1.292e+07 9.650e+06

c2 (bot.left/middle/top rt.) = 3.380e+11 5.029e+11 3.751e+11

t = 3.60e+04 no. steps = 343 order = 3 stepsize = 2.34e+01

c1 (bot.left/middle/top rt.) = 1.404e+04 2.029e+04 1.561e+04

c2 (bot.left/middle/top rt.) = 3.387e+11 4.894e+11 3.765e+11

t = 4.32e+04 no. steps = 421 order = 4 stepsize = 5.26e+02

c1 (bot.left/middle/top rt.) = -4.385e-06 -1.528e-06 -4.905e-06

c2 (bot.left/middle/top rt.) = 3.382e+11 1.355e+11 3.804e+11

t = 5.04e+04 no. steps = 445 order = 3 stepsize = 1.98e+02

c1 (bot.left/middle/top rt.) = 4.461e-07 1.869e-07 4.842e-07

c2 (bot.left/middle/top rt.) = 3.358e+11 4.930e+11 3.864e+11

t = 5.76e+04 no. steps = 462 order = 5 stepsize = 2.35e+02

c1 (bot.left/middle/top rt.) = 3.204e-09 1.203e-09 3.555e-09

c2 (bot.left/middle/top rt.) = 3.320e+11 9.650e+11 3.909e+11

t = 6.48e+04 no. steps = 474 order = 5 stepsize = 6.02e+02

c1 (bot.left/middle/top rt.) = -1.066e-09 -3.409e-10 -1.206e-09

c2 (bot.left/middle/top rt.) = 3.313e+11 8.922e+11 3.963e+11

t = 7.20e+04 no. steps = 486 order = 5 stepsize = 6.02e+02

c1 (bot.left/middle/top rt.) = 2.614e-09 9.722e-10 2.904e-09

c2 (bot.left/middle/top rt.) = 3.330e+11 6.186e+11 4.039e+11

t = 7.92e+04 no. steps = 498 order = 5 stepsize = 6.02e+02

c1 (bot.left/middle/top rt.) = 4.649e-11 1.729e-11 5.161e-11

c2 (bot.left/middle/top rt.) = 3.334e+11 6.669e+11 4.120e+11

t = 8.64e+04 no. steps = 510 order = 5 stepsize = 6.02e+02

c1 (bot.left/middle/top rt.) = -8.856e-14 -3.348e-14 -9.785e-14

c2 (bot.left/middle/top rt.) = 3.352e+11 9.107e+11 4.163e+11

Final Statistics ..
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lenrw = 2089 leniw = 50

lenrwLS = 2046 leniwLS = 10

nst = 510

nfe = 675 nfeLS = 641

nni = 671 nli = 641

nsetups = 94 netf = 36

npe = 9 nps = 1243

ncfn = 0 ncfl = 0
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3 Parallel example problems

3.1 A nonstiff example: cvAdvDiff non p

This problem begins with a simple diffusion-advection equation for u = u(t, x)

∂u

∂t
=

∂2u

∂x2
+ 0.5

∂u

∂x
(7)

for 0 ≤ t ≤ 5, 0 ≤ x ≤ 2, and subject to homogeneous Dirichlet boundary conditions and
initial values given by

u(t, 0) = 0 , u(t, 2) = 0 , (8)

u(0, x) = x(2 − x)e2x .

A system of MX ODEs is obtained by discretizing the x-axis with MX+2 grid points and
replacing the first and second order spatial derivatives with their central difference approxi-
mations. Since the value of u is constant at the two endpoints, the semi-discrete equations
for those points can be eliminated. With ui as the approximation to u(t, xi), xi = i(∆x), and
∆x = 2/(MX+1), the resulting system of ODEs, u̇ = f(t, u), can now be written:

u̇i =
ui+1 − 2ui + ui−1

(∆x)2
+ 0.5

ui+1 − ui−1

2(∆x)
. (9)

This equation holds for i = 1, 2, . . . , MX, with the understanding that u0 = uMX+1 = 0.
In the parallel processing environment, we may think of the several processors as being

laid out on a straight line with each processor to compute its contiguous subset of the solution
vector. Consequently the computation of the right hand side of Eq. (9) requires that each
interior processor must pass the first component of its block of the solution vector to its left-
hand neighbor, acquire the last component of that neighbor’s block, pass the last component
of its block of the solution vector to its right-hand neighbor, and acquire the first component of
that neighbor’s block. If the processor is the first (0th) or last processor, then communication
to the left or right (respectively) is not required.

This problem uses the Adams (non-stiff) integration formula and functional iteration. It
is unrealistically simple, but serves to illustrate use of the parallel version of CVODE.

The cvAdvDiff non p.c file begins with #include declarations for various required header
files, including lines for nvector parallel to access the parallel N Vector type and related
macros, and for mpi.h to access MPI types and constants. Following that are definitions
of problem constants and a data block for communication with the f routine. That block
includes the number of PEs, the index of the local PE, and the MPI communicator.

The main program begins with MPI calls to initialize MPI and to set multi-processor
environment parameters npes (number of PEs) and my pe (local PE index). The local vector
length is set according to npes and the problem size NEQ (which may or may not be multiple
of npes). The value my base is the base value for computing global indices (from 1 to NEQ)
for the local vectors. The solution vector u is created with a call to N VNew Parallel and
loaded with a call to SetIC. The calls to CVodeCreate, CVodeInit, and CVodeSStolerances

specify a cvode solution with the nonstiff method and scalar tolerances. The call to
CVodeSetUserdata insures that the pointer data is passed to the f routine whenever it
is called. A heading is printed (if on processor 0). In a loop over tout values, CVode is called,
and the return value checked for errors. The max-norm of the solution and the total number
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of time steps so far are printed at each output point. Finally, some statistical counters are
printed, memory is freed, and MPI is finalized.

The SetIC routine uses the last two arguments passed to it to compute the set of global
indices (my base+1 to my base+my length) corresponding to the local part of the solution
vector u, and then to load the corresponding initial values. The PrintFinalStats routine
uses CVodeGet*** calls to get various counters, and then prints these. The counters are: nst
(number of steps), nfe (number of f evaluations), nni (number of nonlinear iterations), netf
(number of error test failures), and ncfn (number of nonlinear convergence failures). This
routine is suitable for general use with cvode applications to nonstiff problems.

The f function is an implementation of Eq. (9), but preceded by communication opera-
tions appropriate for the parallel setting. It copies the local vector u into a larger array z,
shifted by 1 to allow for the storage of immediate neighbor components. The first and last
components of u are sent to neighboring processors with MPI Send calls, and the immedi-
ate neighbor solution values are received from the neighbor processors with MPI Recv calls,
except that zero is loaded into z[0] or z[my length+1] instead if at the actual boundary.
Then the central difference expressions are easily formed from the z array, and loaded into
the data array of the udot vector.

The cvAdvDiff non p.c file includes a routine check flag that checks the return values
from calls in main. This routine was written to be used by any parallel sundials application.

The output below is for cvAdvDiff non p with MX = 10 and four processors. Varying
the number of processors will alter the output, only because of roundoff-level differences in
various vector operations. The fairly high value of ncfn indicates that this problem is on the
borderline of being stiff.

cvAdvDiff non p sample output

1-D advection -diffusion equation , mesh size = 10

Number of PEs = 4

At t = 0.00 max.norm(u) = 1.569909e+01 nst = 0

At t = 0.50 max.norm(u) = 3.052881e+00 nst = 113

At t = 1.00 max.norm(u) = 8.753188e-01 nst = 191

At t = 1.50 max.norm(u) = 2.494926e-01 nst = 265

At t = 2.00 max.norm(u) = 7.109707e-02 nst = 339

At t = 2.50 max.norm(u) = 2.026223e-02 nst = 418

At t = 3.00 max.norm(u) = 5.777332e-03 nst = 486

At t = 3.50 max.norm(u) = 1.650483e-03 nst = 563

At t = 4.00 max.norm(u) = 4.754357e-04 nst = 646

At t = 4.50 max.norm(u) = 1.374222e-04 nst = 715

At t = 5.00 max.norm(u) = 3.937469e-05 nst = 795

Final Statistics:

nst = 795 nfe = 1465 nni = 1461 ncfn = 146 netf = 5

3.2 A user preconditioner example: cvDiurnal kry p

As an example of using cvode with the Krylov linear solver cvspgmr and the parallel MPI
nvector parallel module, we describe a test problem based on the system PDEs given
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above for the cvDiurnal kry example. As before, we discretize the PDE system with central
differencing, to obtain an ODE system u̇ = f(t, u) representing (4). But in this case, the
discrete solution vector is distributed over many processors. Specifically, we may think of the
processors as being laid out in a rectangle, and each processor being assigned a subgrid of
size MXSUB×MYSUB of the x− y grid. If there are NPEX processors in the x direction and NPEY

processors in the y direction, then the overall grid size is MX×MY with MX=NPEX×MXSUB and
MY=NPEY×MYSUB, and the size of the ODE system is 2·MX·MY.

To compute f in this setting, the processors pass and receive information as follows. The
solution components for the bottom row of grid points in the current processor are passed
to the processor below it and the solution for the top row of grid points is received from
the processor below the current processor. The solution for the top row of grid points for
the current processor is sent to the processor above the current processor, while the solution
for the bottom row of grid points is received from that processor by the current processor.
Similarly the solution for the first column of grid points is sent from the current processor to
the processor to its left and the last column of grid points is received from that processor by
the current processor. The communication for the solution at the right edge of the processor
is similar. If this is the last processor in a particular direction, then message passing and
receiving are bypassed for that direction.

This code is intended to provide a more realistic example than that in cvAdvDiff non p,
and to provide a template for a stiff ODE system arising from a PDE system. The solution
method is BDF with Newton iteration and spgmr. The left preconditioner is the block-
diagonal part of the Newton matrix, with 2 × 2 blocks, and the corresponding diagonal
blocks of the Jacobian are saved each time the preconditioner is generated, for re-use later
under certain conditions.

The organization of the cvDiurnal kry p program deserves some comments. The right-
hand side routine f calls two other routines: ucomm, which carries out inter-processor commu-
nication; and fcalc, which operates on local data only and contains the actual calculation of
f(t, u). The ucomm function in turn calls three routines which do, respectively, non-blocking
receive operations, blocking send operations, and receive-waiting. All three use MPI, and
transmit data from the local u vector into a local working array uext, an extended copy of
u. The fcalc function copies u into uext, so that the calculation of f(t, u) can be done
conveniently by operations on uext only. Most other features of cvDiurnal kry p.c are the
same as in cvDiurnal kry.c, except for extra logic involved with distributed vectors.

The following is a sample output from cvDiurnal kry p, for four processors (in a 2 × 2
array) with a 5×5 subgrid on each. The output will vary slightly if the number of processors
is changed.

cvDiurnal kry p sample output

2-species diurnal advection -diffusion problem

t = 7.20e+03 no. steps = 219 order = 5 stepsize = 1.59e+02

At bottom left: c1 , c2 = 1.047e+04 2.527e+11

At top right: c1 , c2 = 1.119e+04 2.700e+11

t = 1.44e+04 no. steps = 251 order = 5 stepsize = 3.77e+02

At bottom left: c1 , c2 = 6.659e+06 2.582e+11

At top right: c1 , c2 = 7.301e+06 2.833e+11

t = 2.16e+04 no. steps = 277 order = 5 stepsize = 2.75e+02
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At bottom left: c1 , c2 = 2.665e+07 2.993e+11

At top right: c1 , c2 = 2.931e+07 3.313e+11

t = 2.88e+04 no. steps = 307 order = 4 stepsize = 1.98e+02

At bottom left: c1 , c2 = 8.702e+06 3.380e+11

At top right: c1 , c2 = 9.650e+06 3.751e+11

t = 3.60e+04 no. steps = 335 order = 5 stepsize = 1.17e+02

At bottom left: c1 , c2 = 1.404e+04 3.387e+11

At top right: c1 , c2 = 1.561e+04 3.765e+11

t = 4.32e+04 no. steps = 388 order = 4 stepsize = 4.48e+02

At bottom left: c1 , c2 = -5.732e-07 3.382e+11

At top right: c1 , c2 = -6.367e-07 3.804e+11

t = 5.04e+04 no. steps = 406 order = 5 stepsize = 3.97e+02

At bottom left: c1 , c2 = -4.317e-09 3.358e+11

At top right: c1 , c2 = -8.233e-09 3.864e+11

t = 5.76e+04 no. steps = 418 order = 5 stepsize = 4.74e+02

At bottom left: c1 , c2 = -2.576e-09 3.320e+11

At top right: c1 , c2 = -1.259e-09 3.909e+11

t = 6.48e+04 no. steps = 428 order = 5 stepsize = 7.70e+02

At bottom left: c1 , c2 = 3.451e-09 3.313e+11

At top right: c1 , c2 = 2.081e-09 3.963e+11

t = 7.20e+04 no. steps = 437 order = 5 stepsize = 7.70e+02

At bottom left: c1 , c2 = 1.630e-11 3.330e+11

At top right: c1 , c2 = 1.843e-11 4.039e+11

t = 7.92e+04 no. steps = 447 order = 5 stepsize = 7.70e+02

At bottom left: c1 , c2 = -1.704e-11 3.334e+11

At top right: c1 , c2 = -1.131e-11 4.120e+11

t = 8.64e+04 no. steps = 456 order = 5 stepsize = 7.70e+02

At bottom left: c1 , c2 = 1.496e-12 3.352e+11

At top right: c1 , c2 = 8.085e-13 4.163e+11

Final Statistics:

lenrw = 2089 leniw = 120

lenrwls = 2046 leniwls = 80

nst = 456

nfe = 586 nfels = 619

nni = 582 nli = 619

nsetups = 73 netf = 25

npe = 8 nps = 1149

ncfn = 0 ncfl = 0

3.3 A CVBBDPRE preconditioner example: cvDiurnal kry bbd p

In this example, cvDiurnal kry bbd p, we solve the same problem as in cvDiurnal kry p

above, but instead of supplying the preconditioner, we use the cvbbdpre module, which
generates and uses a band-block-diagonal preconditioner. The half-bandwidths of the Jaco-
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bian block on each processor are both equal to 2·MXSUB, and that is the value supplied as
mudq and mldq in the call to CVBBDPrecInit. But in order to reduce storage and computa-
tion costs for preconditioning, we supply the values mukeep = mlkeep = 2 (= NVARS) as the
half-bandwidths of the retained band matrix blocks. This means that the Jacobian elements
are computed with a difference quotient scheme using the true bandwidth of the block, but
only a narrow band matrix (bandwidth 5) is kept as the preconditioner.

As in cvDiurnal kry p.c, the f routine in cvDiurnal kry bbd p.c simply calls a com-
munication routine, fucomm, and then a strictly computational routine, flocal. However,
the call to CVBBDPrecInit specifies the pair of routines to be called as ucomm and flocal,
where ucomm is NULL. This is because each call by the solver to ucomm is preceded by a call
to f with the same (t,u) arguments, and therefore the communication needed for flocal in
the solver’s calls to it have already been done.

In cvDiurnal kry bbd p.c, the problem is solved twice — first with preconditioning on
the left, and then on the right. Thus prior to the second solution, calls are made to reset the
initial values (SetInitialProfiles), the main solver memory (CVodeReInit), the cvbbd-

pre memory (CVBBDPrecReInit), as well as the preconditioner type (CVSpilsSetPrecType).
Sample output from cvDiurnal kry bbd p follows, again using 5 × 5 subgrids on a 2 × 2

processor grid. The performance of the preconditioner, as measured by the number of Krylov
iterations per Newton iteration, nli/nni, is very close to that of cvDiurnal kry p when
preconditioning is on the left, but slightly poorer when it is on the right.

cvDiurnal kry bbd p sample output

2-species diurnal advection -diffusion problem

10 by 10 mesh on 4 processors

Using CVBBDPRE preconditioner module

Difference -quotient half -bandwidths are mudq = 10, mldq = 10

Retained band block half -bandwidths are mukeep = 2, mlkeep = 2

Preconditioner type is: jpre = PREC_LEFT

t = 7.20e+03 no. steps = 190 order = 5 stepsize = 1.61e+02

At bottom left: c1 , c2 = 1.047e+04 2.527e+11

At top right: c1 , c2 = 1.119e+04 2.700e+11

t = 1.44e+04 no. steps = 221 order = 5 stepsize = 3.85e+02

At bottom left: c1 , c2 = 6.659e+06 2.582e+11

At top right: c1 , c2 = 7.301e+06 2.833e+11

t = 2.16e+04 no. steps = 247 order = 5 stepsize = 3.00e+02

At bottom left: c1 , c2 = 2.665e+07 2.993e+11

At top right: c1 , c2 = 2.931e+07 3.313e+11

t = 2.88e+04 no. steps = 272 order = 4 stepsize = 4.05e+02

At bottom left: c1 , c2 = 8.702e+06 3.380e+11

At top right: c1 , c2 = 9.650e+06 3.751e+11

t = 3.60e+04 no. steps = 309 order = 4 stepsize = 7.53e+01

At bottom left: c1 , c2 = 1.404e+04 3.387e+11

At top right: c1 , c2 = 1.561e+04 3.765e+11

t = 4.32e+04 no. steps = 377 order = 4 stepsize = 4.02e+02

At bottom left: c1 , c2 = 1.908e-07 3.382e+11

At top right: c1 , c2 = 2.345e-07 3.804e+11
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t = 5.04e+04 no. steps = 392 order = 5 stepsize = 3.67e+02

At bottom left: c1 , c2 = -6.408e-10 3.358e+11

At top right: c1 , c2 = -6.654e-10 3.864e+11

t = 5.76e+04 no. steps = 403 order = 5 stepsize = 4.72e+02

At bottom left: c1 , c2 = 2.017e-08 3.320e+11

At top right: c1 , c2 = 3.353e-08 3.909e+11

t = 6.48e+04 no. steps = 415 order = 5 stepsize = 7.47e+02

At bottom left: c1 , c2 = -2.502e-10 3.313e+11

At top right: c1 , c2 = 2.005e-10 3.963e+11

t = 7.20e+04 no. steps = 424 order = 5 stepsize = 7.47e+02

At bottom left: c1 , c2 = 4.217e-12 3.330e+11

At top right: c1 , c2 = -2.693e-12 4.039e+11

t = 7.92e+04 no. steps = 434 order = 5 stepsize = 7.47e+02

At bottom left: c1 , c2 = 2.779e-12 3.334e+11

At top right: c1 , c2 = -1.865e-12 4.120e+11

t = 8.64e+04 no. steps = 444 order = 5 stepsize = 7.47e+02

At bottom left: c1 , c2 = 2.331e-13 3.352e+11

At top right: c1 , c2 = -1.599e-13 4.163e+11

Final Statistics:

lenrw = 2089 leniw = 120

lenrwls = 2046 leniwls = 80

nst = 444

nfe = 581 nfels = 526

nni = 577 nli = 526

nsetups = 75 netf = 28

npe = 8 nps = 1057

ncfn = 0 ncfl = 0

In CVBBDPRE: real/integer local work space sizes = 600, 50

no. flocal evals. = 176

-------------------------------------------------------------------

Preconditioner type is: jpre = PREC_RIGHT

t = 7.20e+03 no. steps = 191 order = 5 stepsize = 1.22e+02

At bottom left: c1 , c2 = 1.047e+04 2.527e+11

At top right: c1 , c2 = 1.119e+04 2.700e+11

t = 1.44e+04 no. steps = 223 order = 5 stepsize = 2.79e+02

At bottom left: c1 , c2 = 6.659e+06 2.582e+11

At top right: c1 , c2 = 7.301e+06 2.833e+11

t = 2.16e+04 no. steps = 249 order = 5 stepsize = 4.31e+02

At bottom left: c1 , c2 = 2.665e+07 2.993e+11

At top right: c1 , c2 = 2.931e+07 3.313e+11

t = 2.88e+04 no. steps = 314 order = 3 stepsize = 9.38e+01
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At bottom left: c1 , c2 = 8.702e+06 3.380e+11

At top right: c1 , c2 = 9.650e+06 3.751e+11

t = 3.60e+04 no. steps = 350 order = 5 stepsize = 9.78e+01

At bottom left: c1 , c2 = 1.404e+04 3.387e+11

At top right: c1 , c2 = 1.561e+04 3.765e+11

t = 4.32e+04 no. steps = 403 order = 4 stepsize = 3.87e+02

At bottom left: c1 , c2 = 1.504e-09 3.382e+11

At top right: c1 , c2 = 1.683e-09 3.804e+11

t = 5.04e+04 no. steps = 416 order = 5 stepsize = 5.91e+02

At bottom left: c1 , c2 = -1.137e-11 3.358e+11

At top right: c1 , c2 = -1.439e-11 3.864e+11

t = 5.76e+04 no. steps = 432 order = 5 stepsize = 1.73e+02

At bottom left: c1 , c2 = 1.293e-09 3.320e+11

At top right: c1 , c2 = 2.448e-10 3.909e+11

t = 6.48e+04 no. steps = 447 order = 5 stepsize = 6.38e+02

At bottom left: c1 , c2 = 7.963e-13 3.313e+11

At top right: c1 , c2 = -2.943e-13 3.963e+11

t = 7.20e+04 no. steps = 459 order = 5 stepsize = 6.38e+02

At bottom left: c1 , c2 = -2.414e-12 3.330e+11

At top right: c1 , c2 = 2.797e-13 4.039e+11

t = 7.92e+04 no. steps = 470 order = 5 stepsize = 6.38e+02

At bottom left: c1 , c2 = -1.059e-13 3.334e+11

At top right: c1 , c2 = 3.557e-14 4.120e+11

t = 8.64e+04 no. steps = 481 order = 5 stepsize = 6.38e+02

At bottom left: c1 , c2 = 6.045e-15 3.352e+11

At top right: c1 , c2 = -2.016e-15 4.163e+11

Final Statistics:

lenrw = 2089 leniw = 120

lenrwls = 2046 leniwls = 80

nst = 481

nfe = 622 nfels = 769

nni = 618 nli = 769

nsetups = 104 netf = 33

npe = 9 nps = 1281

ncfn = 0 ncfl = 0

In CVBBDPRE: real/integer local work space sizes = 600, 50

no. flocal evals. = 198
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4 Fortran example problems

The Fortran example problem programs supplied with the cvode package are all written in
standard Fortran77 and use double precision arithmetic. However, when the Fortran ex-
amples are built, the source code is automatically modified according to the configure options
supplied by the user and the system type. Integer variables are declared as INTEGER*n, where
n denotes the number of bytes in the corresponding C type (long int or int). Floating-
point variable declarations remain unchanged if double precision is used, but are changed
to REAL*n, where n denotes the number of bytes in the sundials type realtype, if using
single precision. Also, if using single precision, then declarations of floating-point constants
are appropriately modified; e.g. 0.5D-4 is changed to 0.5E-4.

4.1 A serial example: fcvDiurnal kry

The fcvDiurnal kry example is a Fortran equivalent of the cvDiurnal kry problem. (In
fact, it was derived from an earlier Fortran example program for VODPK.)

The main program begins with a call to INITKX, which sets problem parameters, loads
these into arrays IPAR and RPAR for use by other routines, and loads Y (here called U0) with
its initial values. Main calls FNVINITS, FCVMALLOC, FCVSPGMR, and FCVSPILSSETPREC, to
initialize the nvector serial module, the main solver memory, and the cvspgmr module,
and to specify user-supplied preconditioner setup and solve routines. It calls FCVODE in a loop
over TOUT values, with printing of selected solution values and performance data (from the
IOUT and ROUT arrays). At the end, it prints a number of performance counters, and frees
memory with calls to FCVFREE.

In fcvDiurnal kry.f, the FCVFUN routine is a straghtforward implementation of the
discretized form of Eqns. (4). In FCVPSET, the block-diagonal part of the Jacobian, Jbd, is
computed (and copied to P) if JOK = 0, but is simply copied from BD to P if JOK = 1. In both
cases, the preconditioner matrix P is formed from Jbd and its 2×2 blocks are LU-factored. In
FCVPSOL, the solution of a linear system Px = z is solved by doing backsolve operations on the
blocks. Subordinate routines are used to isolate these evaluation, factorization, and backsolve
operations. The remainder of fcvDiurnal kry.f consists of routines from LINPACK and
the BLAS needed for matrix and vector operations.

The following is sample output from fcvDiurnal kry, using a 10× 10 mesh. The perfor-
mance of fcvode here is quite similar to that of cvode on the cvDiurnal kry problem, as
expected.

fcvDiurnal kry sample output

Krylov example problem:

Kinetics -transport , NEQ = 200

t = 0.720E+04 nst = 219 q = 5 h = 0.158696E+03

c1 (bot.left/middle/top rt.) = 0.104683E+05 0.296373E+05 0.111853E+05

c2 (bot.left/middle/top rt.) = 0.252672E+12 0.715376E+12 0.269977E+12

t = 0.144E+05 nst = 251 q = 5 h = 0.377205E+03

c1 (bot.left/middle/top rt.) = 0.665902E+07 0.531602E+07 0.730081E+07

c2 (bot.left/middle/top rt.) = 0.258192E+12 0.205680E+12 0.283286E+12

t = 0.216E+05 nst = 277 q = 5 h = 0.274587E+03
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c1 (bot.left/middle/top rt.) = 0.266498E+08 0.103636E+08 0.293077E+08

c2 (bot.left/middle/top rt.) = 0.299279E+12 0.102810E+12 0.331344E+12

t = 0.288E+05 nst = 312 q = 4 h = 0.367517E+03

c1 (bot.left/middle/top rt.) = 0.870209E+07 0.129197E+08 0.965002E+07

c2 (bot.left/middle/top rt.) = 0.338035E+12 0.502929E+12 0.375096E+12

t = 0.360E+05 nst = 350 q = 4 h = 0.683836E+02

c1 (bot.left/middle/top rt.) = 0.140404E+05 0.202903E+05 0.156090E+05

c2 (bot.left/middle/top rt.) = 0.338677E+12 0.489443E+12 0.376517E+12

t = 0.432E+05 nst = 407 q = 4 h = 0.383863E+03

c1 (bot.left/middle/top rt.) = 0.803367E-06 0.363858E-06 0.889797E-06

c2 (bot.left/middle/top rt.) = 0.338233E+12 0.135487E+12 0.380352E+12

t = 0.504E+05 nst = 436 q = 3 h = 0.215343E+03

c1 (bot.left/middle/top rt.) = 0.375001E-05 0.665499E-06 0.454113E-05

c2 (bot.left/middle/top rt.) = 0.335816E+12 0.493028E+12 0.386445E+12

t = 0.576E+05 nst = 454 q = 5 h = 0.428080E+03

c1 (bot.left/middle/top rt.) = 0.112301E-08 0.194567E-09 0.136087E-08

c2 (bot.left/middle/top rt.) = 0.332031E+12 0.964985E+12 0.390900E+12

t = 0.648E+05 nst = 466 q = 5 h = 0.690422E+03

c1 (bot.left/middle/top rt.) = 0.353041E-08 0.590752E-09 0.428410E-08

c2 (bot.left/middle/top rt.) = 0.331303E+12 0.892184E+12 0.396342E+12

t = 0.720E+05 nst = 476 q = 5 h = 0.690422E+03

c1 (bot.left/middle/top rt.) = -0.121418E-09 -0.206756E-10 -0.147240E-09

c2 (bot.left/middle/top rt.) = 0.332972E+12 0.618620E+12 0.403885E+12

t = 0.792E+05 nst = 487 q = 5 h = 0.690422E+03

c1 (bot.left/middle/top rt.) = -0.341376E-11 -0.568210E-12 -0.414339E-11

c2 (bot.left/middle/top rt.) = 0.333441E+12 0.666893E+12 0.412026E+12

t = 0.864E+05 nst = 497 q = 5 h = 0.690422E+03

c1 (bot.left/middle/top rt.) = 0.309841E-12 0.526192E-13 0.375773E-12

c2 (bot.left/middle/top rt.) = 0.335178E+12 0.910652E+12 0.416251E+12

Final statistics:

number of steps = 497 number of f evals. = 651

number of prec. setups = 91

number of prec. evals. = 9 number of prec. solves = 1233

number of nonl. iters. = 647 number of lin. iters. = 652

average Krylov subspace dimension (NLI/NNI) = 0.100773E+01

number of conv. failures .. nonlinear = 0 linear = 0

number of error test failures = 34

4.2 A parallel example: fcvDiag kry bbd p

This example, fcvDiag kry bbd p, uses a simple diagonal ODE system to illustrate the use
of fcvode in a parallel setting. The system is

ẏi = −α i yi (i = 1, . . . , N) (10)
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on the time interval 0 ≤ t ≤ 1. In this case, we use α = 10 and N = 10∗NPES, where
NPES is the number of processors and is specified at run time. The linear solver to be used is
spgmr with the cvbbdpre (band-block-diagonal) preconditioner. Since the system Jacobian
is diagonal, the half-bandwidths specified are all zero. The problem is solved twice — with
preconditioning on the left, then on the right.

The source file for this problem begins with MPI calls to initialize MPI and to get the
number of processors and local processor index. Following the call to FCVMALLOC, the linear
solver specification is done with calls to FCVSPGMR and FCVBBDINIT. In a loop over TOUT

values, it calls FCVODE and prints the step and f evaluation counters. After that, it computes
and prints the maximum global error, and all the relevant performance counters. Those
specific to cvbbdpre are obtained by a call to FCVBBDOPT. To prepare for the second run,
the program calls FCVREINIT, FCVBBDREINIT, and FCVSPGMRREINIT, in addition to resetting
the initial conditions. Finally, it frees memory and terminates MPI. Notice that in the FCVFUN
routine, the local processor index MYPE and the local vector size NLOCAL are used to form the
global index values needed to evaluate the right-hand side of Eq. (10).

The following is a sample output from fcvDiag kry bbd p, with NPES = 4. As expected,
the performance is identical for left vs right preconditioning.

fcvDiag kry bbd p sample output

Diagonal test problem:

NEQ = 40

parameter alpha = 10.000

ydot_i = -alpha*i * y_i (i = 1,...,NEQ)

RTOL , ATOL = 0.1E-04 0.1E-09

Method is BDF/NEWTON/SPGMR

Preconditioner is band -block -diagonal , using CVBBDPRE

Number of processors = 4

Preconditioning on left

t = 0.10E+00 no. steps = 221 no. f-s = 262

t = 0.20E+00 no. steps = 265 no. f-s = 308

t = 0.30E+00 no. steps = 290 no. f-s = 334

t = 0.40E+00 no. steps = 306 no. f-s = 351

t = 0.50E+00 no. steps = 319 no. f-s = 365

t = 0.60E+00 no. steps = 329 no. f-s = 375

t = 0.70E+00 no. steps = 339 no. f-s = 386

t = 0.80E+00 no. steps = 345 no. f-s = 392

t = 0.90E+00 no. steps = 352 no. f-s = 399

t = 0.10E+01 no. steps = 359 no. f-s = 406

Max. absolute error is 0.28E-08

Final statistics:

number of steps = 359 number of f evals. = 406

number of prec. setups = 38

number of prec. evals. = 7 number of prec. solves = 728

number of nonl. iters. = 402 number of lin. iters. = 364

average Krylov subspace dimension (NLI/NNI) = 0.9055

number of conv. failures .. nonlinear = 0 linear = 0

number of error test failures = 5
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main solver real/int workspace sizes = 489 120

linear solver real/int workspace sizes = 446 80

In CVBBDPRE:

real/int local workspace = 20 10

number of g evals. = 14

------------------------------------------------------------

Preconditioning on right

t = 0.10E+00 no. steps = 221 no. f-s = 262

t = 0.20E+00 no. steps = 265 no. f-s = 308

t = 0.30E+00 no. steps = 290 no. f-s = 334

t = 0.40E+00 no. steps = 306 no. f-s = 351

t = 0.50E+00 no. steps = 319 no. f-s = 365

t = 0.60E+00 no. steps = 329 no. f-s = 375

t = 0.70E+00 no. steps = 339 no. f-s = 386

t = 0.80E+00 no. steps = 345 no. f-s = 392

t = 0.90E+00 no. steps = 352 no. f-s = 399

t = 0.10E+01 no. steps = 359 no. f-s = 406

Max. absolute error is 0.28E-08

Final statistics:

number of steps = 359 number of f evals. = 406

number of prec. setups = 38

number of prec. evals. = 7 number of prec. solves = 728

number of nonl. iters. = 402 number of lin. iters. = 364

average Krylov subspace dimension (NLI/NNI) = 0.9055

number of conv. failures .. nonlinear = 0 linear = 0

number of error test failures = 5

main solver real/int workspace sizes = 489 120

linear solver real/int workspace sizes = 446 80

In CVBBDPRE:

real/int local workspace = 20 10

number of g evals. = 14

23



5 Parallel tests

The stiff example problem cvDiurnal kry described above, or rather its parallel version
cvDiurnal kry p, has been modified and expanded to form a test problem for the parallel
version of cvode. This work was largely carried out by M. Wittman and reported in [2].

To start with, in order to add realistic complexity to the solution, the initial profile for
this problem was altered to include a rather steep front in the vertical direction. Specifically,
the function β(y) in Eq. (6) has been replaced by:

β(y) = .75 + .25 tanh(10y − 400) . (11)

This function rises from about .5 to about 1.0 over a y interval of about .2 (i.e. 1/100 of
the total span in y). This vertical variation, together with the horizonatal advection and
diffusion in the problem, demands a fairly fine spatial mesh to achieve acceptable resolution.

In addition, an alternate choice of differencing is used in order to control spurious oscilla-
tions resulting from the horizontal advection. In place of central differencing for that term,
a biased upwind approximation is applied to each of the terms ∂ci/∂x, namely:

∂c/∂x|xj
≈

[

3

2
cj+1 − cj −

1

2
cj−1

]

/(2∆x) . (12)

With this modified form of the problem, we performed tests similar to those described
above for the example. Here we fix the subgrid dimensions at MXSUB = MYSUB = 50, so that
the local (per-processor) problem size is 5000, while the processor array dimensions, NPEX
and NPEY, are varied. In one (typical) sequence of tests, we fix NPEY = 8 (for a vertical mesh
size of MY = 400), and set NPEX = 8 (MX = 400), NPEX = 16 (MX = 800), and NPEX = 32 (MX
= 1600). Thus the largest problem size N is 2 · 400 · 1600 = 1, 280, 000. For these tests, we
also raise the maximum Krylov dimension, maxl, to 10 (from its default value of 5).

For each of the three test cases, the test program was run on a Cray-T3D (256 processors)
with each of three different message-passing libraries:

• MPICH: an implementation of MPI on top of the Chameleon library

• EPCC: an implementation of MPI by the Edinburgh Parallel Computer Centre

• SHMEM: Cray’s Shared Memory Library

The following table gives the run time and selected performance counters for these 9 runs.
In all cases, the solutions agreed well with each other, showing expected small variations with
grid size. In the table, M-P denotes the message-passing library, RT is the reported run time
in CPU seconds, nst is the number of time steps, nfe is the number of f evaluations, nni is
the number of nonlinear (Newton) iterations, nli is the number of linear (Krylov) iterations,
and npe is the number of evaluations of the preconditioner.

Some of the results were as expected, and some were surprising. For a given mesh size,
variations in performance counts were small or absent, except for moderate (but still accept-
able) variations for SHMEM in the smallest case. The increase in costs with mesh size can
be attributed to a decline in the quality of the preconditioner, which neglects most of the
spatial coupling. The preconditioner quality can be inferred from the ratio nli/nni, which
is the average number of Krylov iterations per Newton iteration. The most interesting (and
unexpected) result is the variation of run time with library: SHMEM is the most efficient,
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NPEX M-P RT nst nfe nni nli npe

8 MPICH 436. 1391 9907 1512 8392 24

8 EPCC 355. 1391 9907 1512 8392 24

8 SHMEM 349. 1999 10,326 2096 8227 34

16 MPICH 676. 2513 14,159 2583 11,573 42

16 EPCC 494. 2513 14,159 2583 11,573 42

16 SHMEM 471. 2513 14,160 2581 11,576 42

32 MPICH 1367. 2536 20,153 2696 17,454 43

32 EPCC 737. 2536 20,153 2696 17,454 43

32 SHMEM 695. 2536 20,121 2694 17,424 43

Table 1: Parallel cvode test results vs problem size and message-passing library

but EPCC is a very close second, and MPICH loses considerable efficiency by comparison, as
the problem size grows. This means that the highly portable MPI version of cvode, with an
appropriate choice of MPI implementation, is fully competitive with the Cray-specific version
using the SHMEM library. While the overall costs do not prepresent a well-scaled parallel
algorithm (because of the preconditioner choice), the cost per function evaluation is quite
flat for EPCC and SHMEM, at .033 to .037 (for MPICH it ranges from .044 to .068).

For tests that demonstrate speedup from parallelism, we consider runs with fixed problem
size: MX = 800, MY = 400. Here we also fix the vertical subgrid dimension at MYSUB = 50 and
the vertical processor array dimension at NPEY = 8, but vary the corresponding horizontal
sizes. We take NPEX = 8, 16, and 32, with MXSUB = 100, 50, and 25, respectively. The runs for
the three cases and three message-passing libraries all show very good agreement in solution
values and performance counts. The run times for EPCC are 947, 494, and 278, showing
speedups of 1.92 and 1.78 as the number of processors is doubled (twice). For the SHMEM
runs, the times were slightly lower and the ratios were 1.98 and 1.91. For MPICH, consistent
with the earlier runs, the run times were considerably higher, and in fact show speedup ratios
of only 1.54 and 1.03.
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