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1  overview 
 
NFsim is a generalized biochemical reaction simulator designed to efficiently handle systems 
with a very large state space.  If this makes sense to you, skip down to the getting started 
chapter to try your hand at using NFsim.  If you don’t know why you need NFsim, keep reading. 
 
Traditional stochastic or ODE simulation methods require every possible reaction and molecular 
species to be explicitly enumerated.  For many biochemical systems, this is not a problem.  
However, for biochemical systems that exhibit high degrees of combinatorial complexity, as we’ll 
explain below, this becomes a major problem indeed.  Let’s think about why. 
 
Imagine you have a biochemical reaction system where molecule A can bind to molecule B.  
You would then have a simple reaction network consisting of just two reactions:  
 

A + B → A.B    and   A.B → A + B     
 
Fine.  Now imagine you want to add an additional set of reactions where A can be either 
phosphorylated or dephosphorylated.  This could be written as: 
 

A → Ap   and   Ap → A     
 
But wait!  You can’t just add the phosphorylation reaction alone!  You also have to consider the 
phosphorylation reactions when A is bound to B. To consider all the possibilities of the system, 
you need to define the following four reactions as well: 
 

 
Ap + B → Ap.B    and   Ap.B → Ap + B 

A.B → Ap.B    and   Ap.B → A.B     
 
Suddenly, adding two phosphorylation reactions means that you actually have to write down 
four additional reactions.  If you consider that many signaling systems involve dozens of 
interacting molecules in different states, you can see that the complexity of the system becomes 
a real problem.  That’s why researchers began developing rule-based modeling languages like 
the BioNetGen Language (BNGL).  Instead of requiring the modeler to specify all reactions, 
languages like BNGL only require you to specify reaction rules.  For the A and B system 
above, with phosphorylation, this would amount to only two reaction rules and could be written 
in BNGL as: 
 

A(bSite) + B(aSite) <-> A(bSite!1).B(bSite!1) 
 A(p~UNPHOS) <-> A(p~PHOS) 
 
In BNGL, we specify molecules by their name and use components of those molecules (as in 
‘bSite’, ‘aSite’, and ‘p’) as binding sites that can connect molecules together or as states that 
can have a value (as in phosphorylated or not).  The details of the language are discussed 
elsewhere (http://bionetgen.org), but the idea is simple: the user only has to provide the rules, 
and the computer will figure out the rest. 
 
Although the rule-based approach works great for many systems, most simulators (including 
standard BioNetGen simulators) still rely on generating all possible reactions from the list of 
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reaction rules.  So, the full reaction network is enumerated.  For our A and B example here, this 
isn’t a problem because a computer can easily generate and handle 4 extra reactions.  For 
polymerization, aggregation, or clustering type systems, however, there may be millions, billions 
or even an infinite number of possible reactions!  In this case, traditional simulators just don’t cut 
it.  This problem is known generally as combinatorial complexity. 
 
NFsim (aka the Network-Free Stochastic Simulator) works differently than traditional simulation 
techniques.  It treats each molecule in the system as a separate object that can be connected to 
other molecules.  Then, by propagating rules directly, the full set of possible reactions (the 
reaction network) never has to be enumerated.  That’s why we call it Network-Free.  NFsim only 
keeps track of the state of the system that actually exists, not every possible configuration.  This 
makes simulating systems with a large reaction network and a high degree of combinatorial 
complexity not only possible, but fast as well. 
 
Of course, NFsim shouldn’t be used in every situation.  Because molecules are treated as 
distinct objects in NFsim, there is an extra computational overhead in storing and maintaining 
those objects.  The overhead is insignificant when you’re trying to simulate very large systems, 
but it does make simulations of simple systems slower than ODEs or other standard stochastic 
methods.  That’s why we’ve fully integrated NFsim with BioNetGen’s existing capabilities.  
BioNetGen already offers efficient simulation of rule-based models using either ODE’s or 
Gillespie’s stochastic simulation algorithm.  Now, you can write a single model file and choose 
exactly how you want to simulate it. 
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2  getting started 
 

Step 1: download and install NFsim and a free Perl interpreter 
 
NFsim has been tested on a variety of platforms, including Windows (XP, Vista, Windows 7), 
Mac (OS X 10.5+ Intel), and Linux.  You can download the current version of NFsim from the 
NFsim website (http://emonet.biology.yale.edu/nfsim/download/).  The full distribution includes a 
compatible version of BioNetGen, source code, analysis tools, documentation, and a few 
example models. 
 
Once you have downloaded the compressed NFsim file, unzip / untar / install the file to a 
directory of your choice.  NFsim is a self contained program, so uninstalling NFsim is as easy as 
deleting that directory.  We recommend that you choose a directory with no spaces in its name 
to avoid problems with running the program from the command prompt. 
 
To run BioNetGen, you will need a Perl interpreter.  A Perl interpreter usually comes standard in 
Linux and Mac operating systems, but not in Windows.  If you are running Windows or do not 
have a Perl interpreter, you can download ActivePerl, a free interpreter that is available here: 
http://www.activestate.com/Products/activeperl/ .  Note that you may have to reload your PATH 
variable after you install Perl, which you can easily do by logging out then logging back in. 
 

Step 2: open a command line window 
 
NFsim runs from the command line, which gives you more flexibility in running simulations.   So 
the next step is to open a command line window. 
 
To open a command line window in Windows XP, click on the Start menu, go to Start->run, 
and enter ‘cmd’,  In Windows Vista and Windows 7, click on the Start menu and enter ‘cmd’ 
directly into the start menu command bar.  In Mac, search for the terminal program, generally 
found under Applications->Utilities->terminal.  Finally, in Linux, you should already 
know how to open the command line, but if not you can usually find it under Applications-
>System Tools->terminal. 
 

Step 3: test Perl and BioNetGen 
 
With a command line window open, you can now test that your Perl interpreter and BioNetGen 
that came with NFsim was installed properly.  In the command line window, first test Perl by 
typing: 
 
 perl -v 
 
You should see the version number of your Perl installation.  If you do not, then Perl is not 
working or was not installed properly, and you will not be able to run BioNetGen.  Please try 
reinstalling your Perl interpreter. 
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Now, make sure BioNetGen is working.  First, change directories to location where the 
BioNetGen program is located, inside the directory where you installed NFsim, using the cd 
command: 
 
 cd [install path]/NFsim_vX.XX 
 
where [install_path] is the location where you installed NFsim and X.XX is the version of 
NFsim you downloaded.  Now, run BioNetGen by entering: 
 
 perl BNG2.pl -v 
 
If you see the version of BioNetGen printed, BioNetGen and Perl are working correctly. 
 

Step 4: run NFsim 
 
Now you can run your first NFsim model.  If you look in the models directory of the NFsim 
installation, you will find a file named simple_system.bngl.  This is a BNGL model file that 
specifies a simple binding and phosphorylation reaction.  You can open the file in any text editor 
to see what a BNGL file looks like, and see comments that tell explain the basic parts of the file.  
Now try running this model from the command line.  While you are still in the BNG directory of 
your NFsim installation, enter the command: 
 

perl BNG2.pl models/simple_system.bngl 
 
If NFsim is running properly, you will see messages appear in the command line window that 
informs you that the simulation ran.  If you encounter an error saying that the NFsim executable 
could not be found, and you have an older computer or an operating system that we have not 
built a binary for, then you should try to rebuild NFsim for your particular computer architecture 
which is relatively simple to do (see Chapter 10: building NFsim locally). 
 

Step 5: visualize your results 
 
After you run the simulation, NFsim will output a file called simple_system_nf.gdat in the 
models directory.  You can open this file in any text editor you like or load the results into a 
program like Matlab (see Chapter 5: getting results).  However, with the NFsim installation, we 
have also included a simple Java program named PhiBPlot developed to visualize the results 
of gdat files.  If you have Java installed, you can run PhiBPlot in Windows by double clicking 
on the file PhiBPlot.jar in the NFtools/PhiBPlot/ directory, or from the command line 
with: 
 

cd [install path]/NFsim_vX.XX 
java –jar NFtools/PhiBPlot/PhiBPlot.jar 

 
If the command above does not work, make sure that you have Java installed and visible on 
your systems path variable.  Then, in PhiBPlot you can choose to load the 
simple_system_nf.gdat file and plot the simulation output. 



NFs im                                           	

 7 

the	network	free	stochastic	simulator 

3  working with BioNetGen 
 
NFsim was designed so that models are specified in an extended form of the BioNetGen 
Language using .bngl files.  The .bngl files can be read and processed by the BioNetGen 
program which will create an XML encoded form of your model.  This XML format can then be 
read into NFsim and simulated.  Here we discuss the basic features of a BioNetGen model 
specification file.  For more advanced BioNetGen features and a complete BioNetGen model 
specification file guide as well as graphical tools for creating BNGL files, see the BioNetGen 
website: http://bionetgen.org.  More advanced NFsim features can be found later in this manual.  
Once you have written your BNGL model file, you can simulate the model in a variety of ways 
(see Chapter 2: getting started and Chapter 4: running simulations). 
 
 

a. representation of Molecules and Complexes in BNGL 
 
In BNGL, proteins and other biomolecules are represented as structured objects called 
Molecules.  Each Molecule may contain any number of Components that represent structural or 
functional elements of the protein, such as protein domains and phosphorylation sites.  
Components are allowed to have internal states that may, for example, represent a 
conformational state or a posttranslational modification of a domain.  In BNGL, one can define a 
protein S that has a phosphorylation site Y, a binding domain SH2, and a catalytic domain Kin, 
as 
 

S(Y~U~P,SH2,Kin~inact~act) 
 

where the Components of S are listed in parentheses together with the possible internal states 
of each Component.  Internal states are denoted by a list of strings each preceded by ‘~’.  Here, 
the Y Component may be in either the U state or the P state representing the unphosphorylated 
and phosphorylated forms, and the Component Kin may be in either the inact or the act state 
representing inactive and active states of the kinase domain.  The Component SH2 does not 
have any internal states. 
 
Molecules may bind to other Molecules through Components to form complexes.  For instance, 
a dimeric receptor complex can be defined as 
 

R(DD!1,Y1~U,Y2~U).R(DD!1,Y1~U,Y2~U) 
 
where the two receptors are bound through the link between the dimerization domain (DD) of 
each receptor.  The ‘.’ is used to group Molecules into a complex.  Components linked through 
a bond are indicated by an ‘!’ followed by the index number of the bond.  Here, a bond with 
index 1 links the DD Components of the receptors.  Bond indices can be arbitrarily chosen by the 
user and are local to the complex in which they are used.  Bonds between Components of the 
same Molecule are also allowed. 
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b. structure and syntax of a BNGL file 
 
A BNGL model file for NFsim is comprised of a set of input blocks, each of which begins with 
the line begin [blockname] and ends with the line end [blockname].  The set of input 
blocks includes:  parameters, molecule types, seed species, observables, 
functions, and reaction rules. 
 
The parameters block is used to declare numerical parameters that designate initial Molecule 
numbers and rate constants.  Each parameter is declared on a separate line with the parameter 
name followed by the parameter value.   Parameters can be either single numeric values or 
arbitrary mathematical expressions that reference other parameters already defined.  For 
example: 

 
begin parameters 
    FreeReceptorCount  500 
    RateFactor         10 
    kOn                0.3*RateFactor 
    ... 
end parameters 

 
 
The molecule types block is used for the declaration of Molecules.  This block is optional, 
but highly recommended because it allows more comprehensive error checking and reduces the 
likelihood of unintended user mistakes in model specification.  Each Molecule Type is declared 
on a separate line.  For example, an input block that defines a receptor, R, and signaling protein, 
S, might look like 

 
begin molecule types 
    R(DD,Y~U~P) 
    S(Y~U~P,SH2,Kin~inact~act)  
end molecule types 

 
 
The seed species block is used for the declaration of the molecular species that are initially 
present in the system.  Note that any Component that has an associated state variable must be 
in a defined state.  Each species is declared on a separate line followed by its initial count, 
which may be a defined parameter or arbitrary mathematical formula.  Note that in NFsim, 
molecules are treated as separate objects, so decimal values in the number of species are not 
supported.  Parameters that are used to define initial species counts will be rounded down to 
the nearest whole integer value.  For example, we can define three initial molecular species, a 
free receptor, a receptor dimer, and a free signaling protein as 

 
begin seed species 
    R(DD,Y1~U,Y2~U)                     FreeReceptorCount 
    R(DD!1,Y1~U,Y2~U).R(DD!1,Y1~U,Y2~U)   250 
    S(Y~P,SH2,Kin~inact)                  1000 
end seed species 
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The observables block is used for declaring variables that count the number of Molecules in a 
system that match a pattern.  Observables are useful for defining the output of a model and 
introducing rate laws defined as mathematical expressions of the time-dependent state of the 
system.  An example of an Observable definition is 

 
begin observables 
    Molecules   PhosRec   R(Y1~P) 
    ...     
end observables 
 

which gives the total number of Receptors that are phosphorylated at the Y1 Component at any 
time during the simulation.  The Molecules keyword indicates that the Observable will count a 
Molecule every time it matches the pattern.  BNGL also allows users to define Species 
Observables that count the number of complexes that have at least one Molecule matching the 
pattern.  For instance, a Species Observable will count a dimer of two phosphorylated 
receptors only once. 
 
The functions block is used for defining mathematical expressions that reference defined 
parameters and Observables of the system.  The functions block is a new feature of BNGL 
that was introduced to support functions in NFsim.  Therefore, if the functions block is used 
in a model, it can only be simulated with NFsim.  Below we demonstrate the declaration of a 
simple function named ActivationFunc that references the Observable pattern named 
PhosRec defined earlier, and constant parameters n and Kd that can be defined in the 
parameters block.  

 
begin functions 
    ActivationFunc()= (PhosRec^n) / (Kd^n + PhosRec^n) 
    ... 
end functions 

 
Once declared, functions can be used as the rate law for reaction rules.  In this case, 
ActivationFunc is a global function because it counts the total number of phosphorylated 
receptors in the system.  NFsim also supports local functions which are evaluated separately for 
each molecular complex and require a slightly different syntax.  For a complete description of 
the definition and usage of global and local functions, see Chapter 6: functionally defined 
rate laws. 
 
 
Finally, at the heart of BNGL is the reaction rules block used to define the reaction events 
that can occur in the system.  Each Rule is declared on a separate line.  The two basic types of 
transformation operations that are typically defined in Rules are: (1) change Molecule 
connectivity by making or breaking a bond and (2) change the internal state of Components.  
Other operations, such as Molecule synthesis, degredation, and incrementing the numerical 
internal state value of a Component are not discussed here.  Below is an example reaction 
rules block that defines a dimerization rule with a binding operation and phosphorylation rule 
with an internal state change operation. 
 

begin reaction rules 
    R(DD) + R(DD) -> R(DD!1).R(DD!1) kOnDimer 
    R(DD!+,Y1~U) -> R(DD!+,Y1~P)  kPhos  
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    ... 
end reaction rules 

 
 
These Rules illustrate a number of important elements of BNGL syntax.  The first Rule states 
that two receptors with unbound DD Components (underlined) can dimerize by forming a bond 
between the DD Components with second order kinetic rate kOnDimer.  Notice that the Y1 and 
Y2 Components are not defined in the rule.  When Components are not defined, they do not 
affect the rate of the rule.  In other words, this rule applies to all receptors with unbound DD 
Components regardless of the internal or binding state of Y1 and Y2.  The power of BNGL lies in 
this aspect of Rules: only the minimal conditions for the event to occur need to be explicitly 
defined, thus eliminating the need for the user to enumerate every possible combination.  
 
The second Rule defines the phosphorylation of Y1 Component (underlined) by changing the 
internal state of Y1 from U to P with first order kinetic rate kPhos.  In this Rule there is the added 
constraint that the DD Component must be bound for the reaction to occur indicated by the ‘!+’ 
following the DD Component.  Notice again the omission of the Y2 Component of R, which 
means that the Rule is applied regardless of the state of the Y2 Component. 
 
In any particular Rule, multiple internal state changes or binding and unbinding operations can 
be applied to arbitrarily large molecular complexes.  Although the rules shown here are 
irreversible, BNGL also permits the definition of reversible reactions by defining a Rule with the 
double headed arrow, ‘<->’, and providing a second rate constant or functional rate law. 
 



NFs im                                           	

 11 

the	network	free	stochastic	simulator 

4  running simulations 
 

a. running from BioNetGen 
 
The easiest way to run an NFsim simulation is to directly invoke NFsim through BioNetGen.  
Just place the following command at the end of your BNGL model specification file: 
 
simulate_nf{suffix=>nf,t_end=>[sim_length],n_steps=>[output_steps]}; 

 
Then, run BioNetGen with the BNGL file from the command line as you normally would (see 
Chapter 2: getting started).  The suffix parameter tells BioNetGen how to name the output file.  
The simulation length and output steps tell NFsim how long and when to output the observables 
of the system.  So if you wanted to run your simulation for 100 seconds, and output 50 times (or 
once every two seconds), you would enter: 
 

simulate_nf{suffix=>nf,t_end=>100,n_steps=>50}; 
 
At each output step, the counts of every Observable will be written to a .gdat file (see Chapter 
5: getting results).  When you run NFsim in this way, BioNetGen automatically generates the 
XML file needed by NFsim for you, and searches in the [install_path]/bng/bin directory 
for the correct NFsim executable. 
 
If you are familiar with BioNetGen already, then you will recognize that this is similar syntax to 
running a stochastic or ODE simulation in BioNetGen.  Note, however, that NFsim does not 
store all model details after a simulation.  Therefore, NFsim ignores the BioNetGen action 
keywords such as setConcentration, saveConcentrations, and 
resetConcentrations. 
 
NFsim also accepts a number of command line arguments to fine tune your simulation that are 
listed in Appendix a1 and described through this user manual.  You can pass any of these 
extra parameters to NFsim from BioNetGen by setting the param argument in the simulate_nf 
command.  For instance, if you wanted to turn on verbose output (with the NFsim command line 
argument –v) as well as setting the universal traversal limit to be 3 (NFsim argument –utl), 
you can write: 
 
simulate_nf({suffix=>nf,t_end=>100,n_steps=>50,param=> “-v –utl 3”}); 

 
 
 

b. running from a BNG XML file 
 
You don’t need to always invoke NFsim from BioNetGen.  Instead, you can run NFsim directly 
using an XML file that was generated by BioNetGen.  This allows you to call NFsim directly from 
a shell script, for instance, without having to run BioNetGen.  Often this provides more flexibility 
and efficiency when you have to run multiple simulations.  First, you do have to run BioNetGen 
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once in order to generate an XML file that NFsim can read.  To do so, add the following 
command to the end of your BNGL file: 
 
 writeXML(); 
 
This command will produce an XML encoding of your model.  Just run the BNGL file as you 
normally would using BioNetGen (see Chapter 3: working with BioNetGen).  You can also call 
BioNetGen with the –xml flag as: 
 
 perl Perl/BNG2.pl –xml [BNGL_file_name] 
 
Assuming you are in the NFsim installation directory.  This command will also create an xml file.  
Once you have an XML file, you can run NFsim directly from the command prompt.  To do this, 
again from the base installation directory, run the command: 
 
 bin/NFsim_[version] –xml [BNG_XML_file_name] 
 
where [version] is the executable version of NFsim that is specific to your operating system.  
You can look in the bng/bin directory for the set of NFsim executables, and select the one that 
matches your computer.  Note that if you are running NFsim from windows, you must be sure to 
add the .exe file extension when you run NFsim.   
 
When you run NFsim from the command line directly, you must pass in additional parameters to 
tell NFsim how long to simulate and how often to generate output.  There is a complete list of 
parameters in Appendix a1, but for easy reference, here are the basic parameters that you will 
most often use. 
 
 
  -xml           used to specify the input xml file to read.  the xml 

file must be given directly after this flag. 
 
  -o             used to specify the output file name, which is given 

directly after this flag. 
 
  -sim           used to specify the length (in seconds) of a 

simulation when running an xml file.  Fractional 
seconds are valid.  For instance, you could use: -sim 
525.50 

 
  -oSteps        used to specify the number of times throughout the 

simulation that observables will be outputted.  Must 
be an integer value. Default is to output once per 
simulation second. 
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c. running from Matlab using the runBNG function 
 
With NFsim, we have also provided a Matlab function that can run BioNetGen directly from 
Matlab using the included function "runbng", which is available in the NFtools directory.  To 
run BioNetGen in Matlab, open Matlab and change the current Matlab directory to the root 
directory of your NFsim installation.  Once you are in the correct directory, add the NFsim tools 
directory to your Matlab path so that you can call the runbng function by entering: 
 

addpath(‘NFtools/’); 
 
 
Then, you can run BioNetGen, and NFsim if it is called from the model file, as: 
 

[data,varNames,consoleOutput,figureHandles] = . . .   
                  runbng('pathToDirectory','bngl_file_name'); 
 
This will run BioNetGen on the given BNGL file located at the specified path.  For instance, to 
run BioNetGen on the example model 'simple_system.bngl' in the 'models' directory, you would 
enter: 
 

runbng('models','simple_system.bngl'); 
 
The first time you run this function, you will have to provide the installation path of NFsim so that 
the function can identify the necessary executable files.  Then, this function will run the model 
specified and plot any results that are generated in GDAT files.  If there is only one GDAT 
output file created, it will return the data and variable names from that file as 'data' and 
'varNames'.  If there are multiple GDAT files, 'data' and 'varNames' will be cell arrays where 
each cell contains the output of a given GDAT file.  (note: you can use the iscell function in 
Matlab to determine if the returned variable is a cell array or not). 
 
The function also returns the ‘consoleOutput’ of the run (which includes basic information 
about what BioNetGen and the simulation are doing) and ‘figureHandles’ which stores an 
array of handles to all the figures generated so you can change them and set any figure 
properties you need. 
 
 
 

d. running from an RNF script 
 
NFsim can run from an RNF (Run NF) script that is easy to learn, but powerful because you can 
change parameters mid-simulation.  It is one of the more advanced ways to run NFsim, but is 
ideal for large projects that require multiple revisions and runs. 
 
There is an example RNF script in the models directory of your installation named 
example.rnf.  This is the best place to learn about the structure and commands of an RNF 
script, and documentation on the RNF format can be found in that script file.   
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To run an RNF script, first create an RNF file according the specifications in example.rnf.  Then 
use the NFsim argument when running the file.  For instance, to run an RNF file from within 
BioNetGen 
 
 bin/NFsim_[version] –rnf [RNF_file_name] 
 
use the NFsim argument when running the file.  For instance, to run the example.rnf file, 
change directories to the models directory, and run NFsim as: 
 
 ../bin/NFsim_[version] –rnf example.rnf 
 
In Windows, make sure you add the .exe file extension, and use backslashes instead of forward 
slashes.  Even though Windows will often interpret forward slashes correctly, when searching 
for an executable file, it requires backslashes.  Therefore, you will have to run the file in 
Windows as: 
 
 ..\bin\NFsim_[version] –rnf example.rnf 
 
Note that when you run an RNF file that specifies an XML model (as in example.rnf), the 
path to the XML file is interpreted as relative to your current path, not the location of the RNF 
file.  Thus, if you run example.rnf from the main NFsim installation directory instead of from 
the models directory, NFsim will be unable to find the XML file simple_system.xml. 
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5  getting results 
 
A simulation is only as good as the results it can output.  NFsim provides two main options for 
extracting results which are both described below. 
 

a. basic Observables and output 
 
Observables are the typical method of getting output from an NFsim simulation.  All you have to 
do is define the set of Observables you want to watch during the simulation in the BNGL model 
file, and run that file with BioNetGen and NFsim.  NFsim will automatically generate an output 
file with the name [model_name]_nf.gdat.  GDAT files are simple ASCII text files where the 
count of each Observable at every output step is given in a simple table format.  These text files 
can be opened in any standard text editor.  To set the number of times that NFsim produces 
output during a simulation, use the –oSteps command line flag or set it in the 
simulate_nf(…) call in BioNetGen (see Chapter 4: running simulations). 
 
GDAT files can be easily opened and graphed in any other program, from Matlab and 
Mathematica to Excel.  In Matlab, the easiest way to read in the results is by using the function 
tblread.  Simply call it in Matlab as: 
 
 [data,headerNames] = tblread(‘[model_name]_nf.gdat’); 
 
And the results will be available in a two-dimensional matrix named data. 
 
In some cases, you will have a lot of information to write to a file.  When you are running 
simulations with many Observables with many output steps or if you have to thousands of 
output files to generate, you will find that reading an ASCII text file can take time.  Additionally, 
ASCII text files take up a lot of room on your hard disk.  NFsim offers a way to get around this 
by outputting the results in a binary format.  To output your results to a binary file instead of an 
ASCII GDAT file, use the NFsim command line parameter –b. 
 
The binary file will be saved with the same name as the GDAT file, except with the extension 
.dat.  The binary file is saved as a long list of numbers that are should be 8 bytes long.  When 
outputting to binary format, NFsim will also generate a header text file that provides you with the 
header names of each column.   
 
You can write your own program to read the binary file, or you can use the provided 
readNFsimBinary.m function in the NFtools directory.  To run the function, change the 
current directory in Matlab to the installation directory of NFsim.  Once you are in the correct 
directory, add the NFsim tools directory to your Matlab path so that you can call the function by 
entering: 
 

addpath(‘NFtools/’); 
 
 
Then you can call the function as: 
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[data,varNames] = readNFsimBinary([binary_file_name]); 
 
This function will return the data and header names in the same style as tblread. 
 

b. dump System state 
 
Sometimes the default set of observables is not enough to get the results you need.  This is 
especially true of the types of systems that NFsim is very good at simulating.  For instance, if 
you want to simulate receptor aggregation, you would probably like to know what the average 
aggregate size is.  However, you can’t easily write a BNGL observable to capture this. 
 
To solve this problem, we built functionality to dump the complete state of the system at 
particular time steps in a binary format so that any observable, no matter how complex, can be 
calculated and analyzed after the simulation has run.  You can tell NFsim to dump the state of 
the system using the –dump flag.  The dump flag is designed so that you can tell it when and 
where to dump the output.  Call the dump flag as: 
 
 –dump “[1:1:10;25;50]->dumpDir/” 
 
The string given to the dump flag tells NFsim the times to output the complete state of the 
system and the directory to place all the files that are generated.  You can specify and directory 
for this use, but be careful because there will be a lot of files.  You can specify the output times 
in a Matlab style format where the times are delimited by semicolons, and output times can be 
arrays in the form start:step:end.  For instance, in the above example, the state of the 
system will be dumped at times 1,2,3,4,5,6,7,8,9,10,25, and 50. 
 
Then, you can write your own program to process the file or use our included set of Matlab 
scripts to read the data into Matlab.  The Matlab scripts also include some basic functionality to 
look at average aggregate sizes or the average value of local functions evaluated on different 
complexes throughout the system.  The set of Matlab scripts, along with additional 
documentation on their usage, can be found in the NFtools/NFanalyzeDump  directory. 
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6  functionally defined rate laws 
 
NFsim permits the definition of both local and global Functions allowing you to build 
approximations, cooperativity, non-linear reaction rates, and conditional rules into your model.  
This feature has also been added to the BioNetGen Language so that functions are easy to 
define and use in rules.  Here we discuss the definition and usage of global functions that 
depend on the state of the entire system.  The next chapter on distribution of rates reactions 
(or DOR reactions) will discuss how to use local Functions to influence reaction rates according 
to local context. 
 
Note that although functions can be used to define the Michaelis-Menten approximation, like in 
BNG, NFsim supports the MM keyword to quickly define the quasi-steady-state Michaelis-
Menten approximation in rate laws.  The usage of the MM function is identical to that of BNG.  
Namely, use the function in place of a rate as: MM(kcat,Km), where kcat and Km are the 
corresponding parameters of the Michaelis-Menten approximation.  Note that NFsim does not 
support the SAT keyword that is available in BNG.  In all cases, as it is more accurate, use the 
MM keyword instead. 
 

a. defining global functions in BNGL 
 
Global Functions are defined in terms of constant parameters or Observables of the system.  
The typical Observables in a model, which are used for output, can be thought of as global 
Observables because they are computed over every molecule or complex throughout the entire 
system.  Because functional definitions depend on Observables, the Observables block must be 
declared in the BNGL file before the functions block. 
 
The syntax for defining global functions is as follows: 
 
 begin parameters 
           k1  20 
           k2  0.5 
     end parameters 
 
  begin observables 
  Molecules Ap A(p~phos) 
  Molecules Btot B() 
 end observables 
 

begin functions 
  testFunc() = k2*(Ap+Btot)/k1 
 end functions 
 
Notice how we define testFunc() as a mathematical expression of the Observables and 
parameters in the system.  Global functions cannot take any arguments.  Arguments to 
functions are reserved for local functions that are described in chapter 7.  NFsim does not 
currently allow functions to be defined in terms of other functions, although when declaring a 
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rule, the rule can include an expression referencing multiple functions.  Furthermore, functions 
cannot explicitly reference the current simulation time. 
 
A number of mathematical operators and predefined functions can be used in expressions, and 
include the standard operations you might expect.  For a complete listing, see Appendix a2. 
 
 

b. using global functions in rate laws 
 
Once global functions are defined, they can be used to influence the rate of any rule in the 
system.  For instance, we can define a state change of A that occurs with the rate given by the 
testFunc() function. 
 
 begin reaction rules 
  A(m~0) -> A(m~2) testFunc() 
 end reaction rules 
 
We can also use additional mathematical expressions to control the rate when the rule is 
declared.  For example, the following is valid BNGL and will be processed as expected: 
 
 begin reaction rules 
  A(m~0) -> A(m~2) (k1*testFunc())+testFunc()^2 
 end reaction rules 
 
 
An important aspect of functional rate laws to keep in mind is that, like normal rate constants, 
the combinatorial terms are automatically factored into the propensity of the rule.  In other 
words, rate terms and functions are defined in terms of the macroscopic, per site rate, as 
opposed to the total macroscopic propensity.  To illustrate, consider the following model: 
 

begin functions 
  testFunc2() = 50 
 end functions 
 
 begin reaction rules 
  A(m~0) -> A(m~2) testFunc2() 
 end reaction rules 
 
In this model, the combinatorial term of reactant A is factored in for you, so that the total 
propensity of the rule is = 50*|A(m~0)|, where |A(m~0)| is the number of molecules that 
match the pattern A(m~0).  The model above will have the same behavior as this model: 
 
 begin reaction rules 
  A(m~0) -> A(m~2) 50 
 end reaction rules 
 
 
However, the automatic inclusion of the combinatorial term is not always desirable.  In some 
cases, for instance with the Michaelis-Menton approximation, the propensity of the rule may 
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depend on a higher order term of the reactant numbers.  To provide maximal flexibility in these 
cases, the TotalRate keyword is available that allows you to take FULL control of the 
macroscopic propensity term.  To use this keyword, simply define your rule as: 
 

begin functions 
  testFunc2() = 50 
 end functions 
 
 begin reaction rules 
  A(m~0) -> A(m~2) testFunc2()  TotalRate 
 end reaction rules 
 
By activating this keyword, the total propensity will be defined completely by the expression you 
give.  Therefore, the propensity of the rule defined above will be simply 50, regardless of the 
number of reactants there that exist in the system.  When using this syntax, be careful because 
it is easy to write a model that is not biochemically correct. 
 
When using the TotalRate keyword, it is often necessary to refer to the number of reactants in 
the system and use that number in an expression.  One way to do this is to define an 
Observable that tracks the reactant.  This approach, however, is prone to error because you can 
change the reactant pattern without changing the Observable pattern.  NFsim provides a better 
and computationally more effecient method to handle these situations.  NFsim has a built in 
function called reactant_N() where N can be either 1 or 2 depending on the reactant you are 
referencing.  This function returns the number of reactants that match either the first or second 
reactant pattern.  This syntax is currently not part of standard BNGL syntax, so to use this built 
in function, you have to declare the reactant_N() functions in the functions block.  For 
example, this is how you would declare a propensity that is defined in terms of the squared 
number of reactants:  
 

begin functions 
  testFunc2() = 50 
  reactant_1() 
 end functions 
 
 begin reaction rules 
  A(m~0) -> A(m~2) (reactant_1()^2)*testFunc2()  TotalRate 
 end reaction rules 
 
To give another example for the bi-molecular reaction case: 
 

begin functions 
  testFunc2() = 50 
  reactant_1() 
           reactant_2() 
 end functions 
 
 begin reaction rules 
       A(m)+B(a) -> A(m!1).B(a!1) 
                  (reactant_1()^2)*reactant_2()*testFunc2() TotalRate 
 end reaction rules 
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c. outputting the value of global functions 
 
The value of global functions can always be recalculated at any of the output steps by using the 
values of the Observables at that step and reevaluating the same function yourself.  But to 
make things easier, and to make sure NFsim is doing what it’s told, there is a command line flag 
that tells NFsim to output the value of each global function at every step into the default .gdat 
output file.  When calling NFsim, just call it as: 
 
 ./NFsim_[version] […other parameters…] –ogf  
 
where ogf stands for “Output Global Functions”.  Then take a look at your .gdat file.  This is 
useful for making sure NFsim is evaluating exactly how you think it should. 
 
 

c. using conditional expressions in functions 
 
A very useful feature of all functions is that they can include conditional expressions.  Here is a 
brief overview of how to add conditional expressions into your functions and some of the typical 
reasons for doing so. 
 
Conditional expressions allow the function to be evaluated completely differently based on some 
condition.  The way to add this ability is to use an if statement in your function.   The best way 
is to start with an example, so here you go: 
 
 
  begin observables 
  Molecules TimerCount Timer(t~ON) 
 end observables 
 

begin functions 
  testFunc3() = if(TimerCount>1000,50,0) 
           reactant_1() 
 end functions 
 
     begin reaction rules 
  Timer(t~OFF) -> Timer(t~ON) 1 
  A(m~0) -> A(m~2) reactant_1()*testFunc3() 

end reaction rules 
 
 
In the above example, we define an Observable that counts the number of Timer molecules in 
the ON configuration.  We then define a function that checks if the TimerCount Observable 
exceeds 1000.  If the TimerCount Observable is greater than 1000, then the function 
evaluates to 50.  Otherwise, the function evaluates to 0.  This way, we can selectively turn on a 
reaction (say where A changes its m state) only when the Timer molecule observable exceeds 
1000.  The expressions inside the if statement can be as complicated as you want.  You can 



NFs im                                           	

 21 

the	network	free	stochastic	simulator 

even nest if statements inside of each other to get arbitrarily complex logic in your rules.  
Finally, keep in mind that BNGL now supports logical and / or expressions, as && and || 
respectively, to detect complex conditions.  For example, the following is valid: 
 
 testFunc3() = if(TimerCount>1000||TimerCount<100,50,0) 
 
And will set the function to 50 if the TimerCount is either above 1000 or less than 100. 
 
Conditional expressions can be useful in a variety of contexts.  One situation where it proves to 
be useful is if we ever want to conserve the bulk concentration of some molecule in solution, but 
we don’t want to model the entire cell, say.  We can do this by selectively turning on a molecule 
generation function whenever the number of that molecule in solution drops below the 
concentration.  Another useful case is if we want to turn on a set of reactions only after some 
conditions are met.  For instance, if we don’t want to simulate the cell division reactions until we 
have grown to a certain size, or if we don’t want to turn on metabolic reactions until a particular 
sugar to be metabolized is produced. 
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7  distribution of rates reactions 
 
Global functions with conditional expressions are very powerful, but are still not enough to 
adequately describe behavior like cooperativity.  The problem arises out of combinatorial 
complexity.  In current BNGL and other rule-based modeling languages, for every possible rate 
of a reaction or chemical transformation, a separate rule must be written.  For instance, if 
molecule A can be phosphorylated at 3 sites, and each possible phosphorylation state causes A 
to bind B with a distinct rate, then you would normally have to write out all combinations of A: 
 

A(p~0,b) + B(a) -> A(p~0,b!1).B(a!1)   rate0 
A(p~1,b) + B(a) -> A(p~1,b!1).B(a!1)   rate1 
A(p~2,b) + B(a) -> A(p~2,b!1).B(a!1)   rate2 
A(p~3,b) + B(a) -> A(p~3,b!1).B(a!1)   rate3 

 
Of course this is time consuming and prone to error if there are many more states that A can 
exist in.  Sometimes, enumerating all the states is not even possible, for instance, if you have a 
polymer forming and the elongation depends on the length of the polymer.  Then, for every 
single length polymer that can form, you need to write a slightly different rule with a different 
rate.  This gets you back to the problem that NFsim was designed to solve. 
 
However, in most cases, you can simply write a function that describes very well how the rate 
changes according to some property, say the length of the polymer or the phosphorylation state 
of the molecule.  That function might be as simple as: rate of elongation = length of polymer * k.  
This is a function that cannot refer to just global Observables, the way global functions are 
defined, because the length of the polymer is not a global Observable!  It is different for every 
single polymer you are simulating.  However, NFsim and BNGL provide a framework for 
describing such systems in a straightforward way.  We call this syntax local Functions because 
these functions reference variables that are local to individual molecules or molecule 
aggregates.  Reactions that call local functions are referred to as Distribution of Rates 
Reactions because reaction will have a distribution of rates depending on the value of the local 
variables.   
 

a. defining local functions in BNGL 
 
Local functions can be defined as follows: 
 
 begin observables 
  Molecules Ap A(p~phos) 
  Molecules Am0 A(m~0) 
  Molecules Btot B() 
 end observables 
 

begin function 
  localTestFunc(x) = (Ap(x)+Btot)/20 
  localTestFunc2(x,y) = Am0(x)*(Ap(y)+Btot)/20 
 end function  
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Observables used by local Functions can be declared as before.  Local Functions are identified 
by the fact that they accept one or more arguments of an arbitrary name, which we have named 
here x and y.  The arguments x and y that are passed into functions defines the scope over 
which the function is evaluated over.  For now, think about the scope as a small group of 
connected molecules that you want to evaluate the function over.   If a function is not given an 
argument, the scope is considered to be the entire system, and the function becomes a global 
Function.   
 
In a local Function, any Observable that is required to be evaluated over a local scope must be 
passed the appropriate scope argument.  For example, the Observable Ap as referenced in 
localTestFunc(x) is passed the argument x.  Such Observables are said to be local to the 
scope given.  That means that the number of times the Observable is matched in the local 
scope is counted, instead of over the entire system.  Unlike functions, Observables can only be 
given a single scope argument.  Observables that are not provided with a scope, such as the 
Btot Observable, are evaluated like global Observables over the entirety of the system. 
 
Still following along?  Good.  Then let’s move on. 
 

b. using local functions in a reaction 
 
Local Functions only become useful once you use them to define a rate law.  Rules that use a 
local Function in a rate law are considered, in NFsim lingo, as a Distribution of Rates reaction.  
When you use a local function in a rate law, you now have to declare the scope over which you 
want the local function evaluated.  Currently, NFsim supports two scopes, although this may be 
extended in future releases.  The first scope involves all molecules connected to the marked 
Molecule.  You can use this scope in a local function as follows: 
 
 begin reaction rules 
  %c::A(m~0) -> %c::A(m~2) localTestFunc(c) 
 end reaction rules 
 
This rule is interpreted just like any other, except we have marked molecule A using the syntax 
above.  This marking signals NFsim to compute the scope over the set of molecules connected 
in some way to A.  The percent label (%) indicates that c is a pointer to a scope.  The name c 
can be whatever name is appropriate.  Here we arbitrarily use c to represent a complex. 
 
When a rule like the above is declared, NFsim will create the local Function and evaluate it 
separately over each complex that contains an A reactant.  As in global Functions, your 
expression takes complete control over the propensity function. The local Function assigns the 
propensity for a given reactant set to undergo the reaction; consequently, the Function should 
not include terms that compute the overall population reaction rate. The overall rate is 
automatically calculated by summing the local rates over all possible reactant sets. 
 
The second scope that can be defined is over a SINGLE molecule.  To define the scope of a 
local function over a single molecule, instead of the entire connected complex, you can define 
the reaction rule as: 
 
  A%mol(m~0) -> A%mol(m~2) localTestFunc(mol) 
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In this case, the local function will be evaluated over the single molecule A, and ignore 
everything that A is connected to.  This functionality is useful in certain situations. 
 
When using local Functions in your models, there are a couple important items to keep in mind.  
First, local Functions do make NFsim run slower as the local Function must be evaluated over 
each connected complex and explicitly remembered.  Second, the scope of local Functions can 
only be defined over a single reactant per rule (for an exception, see 7.c).  Even though local 
Functions can accept multiple scopes, the scopes must all be found in a SINGLE reactant.  This 
is because it is practically impossible to efficiently simulate a rule that depends functionally on 
both reactants in a local way.  To do so would require computing the local Function over each 
pair of reactants.  For just 100 molecules in each reactant of a bi-molecular rule, this amounts to 
calculating the function for 10,000 pairs.  Therefore, we don’t allow it and the following rule will 
not work, at least in the way that you would like it to: 
 
  %c1::A(b) + %c2::B(a) -> %c1::A(b!1).%c2::B(a!1) localTestFunc2(c1,c2) 
  
However, to reiterate, you can indeed define a function that has multiple scopes, as in: 
 
  %c::A%mol(m~0) -> %c::A%mol(m~2) localTestFunc(c,mol)  
 
This would evaluate the first scope, c, as the set of molecules connected to A, and the second 
scope, mol, as the molecule A only. 
 

c. local functions defined over two reactants 
 
In the general case, the scope of a local Function is restricted to a single reactant. But there is 
one special case implemented that bypasses this restriction (v1.11+). A local function may be 
defined over two reactants if the rate function can be factored into a product where each term 
depends on only one reactant, i.e. 𝑓 𝑥, 𝑦 = 𝑔 𝑥 ⋅ ℎ(𝑦). This special type of local function is 
accessed with the special rate law FunctionProduct(“g(x)”,“h(y)”). 
 
Let’s illustrate a function product with an example. Consider an aggregation model with two 
molecule types, A and B. When an aggregate grows larger than five A molecules, the aggregate 
will become immobile. We want to exclude immobile aggregates from further aggregation, so 
our binding rule must assign a zero rate to any pair that includes an immobilized aggregate. We 
can accomplish this using the FunctionProduct rate law: 
 
 begin molecule types 
    A(b,b,b) 
    B(a,a) 
 end molecule types 
 
 begin observables 
    # count A molecules in aggregate 
    molecules  Atot  A() 
 end observables 
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 begin functions 
    # return 1 if u is mobile, 0 otherwise 
    mob(u) = if( Atot>5, 0, 1 ) 
 end functions 
 
 begin reaction rules 
    # bind A and B, only if both are mobile 
    %x:A(b) + %y:B(a)  FunctionProduct(“kp*mob(x)”,“mob(y)”) 
 end reaction rules 
 
There is a possibility that a future release of NFsim will extend local functions to sums over 
functions of single reactants, i.e. 𝑓(𝑥, 𝑦)  =  𝑔(𝑥)  +  ℎ(𝑦). 
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8  fine tuning your simulations 
 
NFsim provides you with a number of advanced options for running and optimizing your 
simulations and extracting exactly the output that you need.  Often your simulation can be sped 
up by employing one of the performance tweaks mentioned below.  There are also some more 
tricky syntactical features of BioNetGen that have special relevance to how simulations are run.   
These are also discussed in this chapter. 
 

a. on-the-fly Observables 
 
By default, observables are calculated on-the-fly.  This means that at each simulation step, all 
Observables in the system are updated.  This calculation of Observables is essential for 
accurately updating the rates of reactions that depend on those Observables.  See the chapter 
on functionally defined rate laws.  Therefore, if you use functionally defined rate laws, 
Observables will always be calculated on the fly.  In general, however, this calculation is not 
necessary.  You do not need the value of Observables at every simulation step; you only need 
Observables when you actually output the Observables!   
 
NFsim provides the option to recalculate the Observables only when you need them.  This is 
useful when the number of simulation steps between each output step is greater than the 
number of molecules in the system.  This may or may not be true for your simulation, so you 
should try turning on or off this option to see which is more efficient.  To turn off on the fly 
computations of observables, call NFsim as: 
 
 ./NFsim […other parameters…] –notf  
 
where notf stands “Not On-The-Fly”. 
 

b. universal traversal limits 
 
Although it is activated by default to an acceptable value, you can often speed your simulations 
significantly by using this tweak.  In NFsim, each molecule is treated as a separate software 
object.  When a reaction is fired, a particular molecule may bind another, unbind, or change its 
state.  When a molecule is updated, all molecules it is connected to may also need to get 
updated.  By default, NFsim will update as many molecules as necessary based on the size of 
the largest reactant pattern in the rule-set.  Sometimes however, based on the structure of the 
reactant patterns, this is not necessary.  Only the nearest neighbors to the reaction center 
(molecule which is being updated) in a large aggregate need to be updated. 
 
With the universal traversal limit, you can set the distance neighboring molecules have to be to 
the site of the reaction.  To set the universal traversal limit, call NFsim as: 
 
 ./NFsim […other parameters…] –utl [integer]  
 
where the integer is the limit you want to set.  When NFsim then searches for neighboring 
molecules that might have to be updated, it will only search to that depth.  
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The lower you set the universal traversal limit, the less molecules will be checked and the faster 
your simulation will go.  However, be careful as NFsim does not double check your limit.  If you 
set the limit too low, and not all molecules are correctly being updated, then you will either run 
into a simulation error or your results will be incorrect.  Setting the limit to the number of 
molecules in your largest reactant pattern is usually high enough.  Another way to double check 
is to run simulations with a traversal limit and without to see if you are missing any updates.   
 
By default, the traversal limit is set to the size of the largest reactant pattern, which is 
guaranteed to produce correct results because NFsim will always find the changes that apply to 
every reactant pattern in the system.  In many cases, this provides enough speedup and you 
will not have to worry about directly setting the traversal limit.  In other cases, however you may 
have a very large pattern, but the maximal number of bonds you need to traverse to make sure 
that pattern can always be matched is low.  This will happen, for instance, when many 
molecules are connected to a single hub molecule.  In these cases, setting the traversal limit 
yourself can produce significant speedups. 
 
 

c. aggregate bookkeeping 
 
NFsim by default tracks individual molecule agents, not complete molecular complexes.  This is 
useful and makes simulations very fast, but is not always appropriate.  For example, in some 
systems it is necessary to block intra-molecular bonds from occurring to prevent unwanted ring 
formation.  However, to check for intra-molecular bonding events, complete molecular 
complexes must be traversed.  NFsim, however, provides an aggregate bookkeeping system for 
molecular complexes that form by assigning each connected aggregate a unique id.  Then, it 
becomes easy to check if any two molecules are connected.  The trade-off is that there is an 
overhead involved with maintaining the bookkeeping system with a cost that depends on the 
size of the molecular complexes that can form. 
 
The standard behavior of BioNetGen is to assume complex bookkeeping so that intra-molecular 
bonds are kept separate from inter-molecular bonds.  For instance, in a reaction rule like: 
 
 A(b) + B(a) -> A(b!1).B(a!1)  kOn 
 
BioNetGen will only allow binding reactions between a molecule ‘A’ and molecule ‘B’ if ‘A’ and 
‘B’ are on separate complexes.  In NFsim, however, this is not enforced and any ‘A’ molecule 
would be able to bind any ‘B’ molecule regardless of which complex they are on.  In many 
cases, this is ok and is the desired behavior.  In other cases, you might want to use 
BioNetGen’s default behavior, in which case you will have to turn on aggregate bookkeeping. 
 
Aggregate bookkeeping is also necessary for computing Species Observables, which are 
Observables evaluated only once per connected complex.  This is useful when you want to 
query your system for the number of complexes that contain at least one type of molecule or 
other pattern.  For more information on Species Observables, consult the documentation from 
the BioNetGen website. 
 
To turn on aggregate bookkeeping, simply run NFsim as: 
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 ./NFsim […other parameters…] –cb  
 
where ‘cb’ stands for complex bookkeeping. 
 
 

d. restricting the number of molecule agents 
 
In many biochemical systems, Molecules are dynamically created and destroyed.  In NFsim, 
whenever a Molecule is created or destroyed, a new agent must be added or removed from the 
simulation.  Each molecule agent must remember its current state, so requires a small amount 
of memory.  Therefore there is an inherent limit, based on your machine, on the number of 
molecules you can create in memory.  Depending on your operating system, when this limit is 
reached your computer will start using the hard-disk to store memory making your computer run 
incredibly slow occasionally to the point of freezing.  To prevent your computer from running out 
of memory in case you accidentally create too many molecules, NFsim sets a default limit of 
100,000 molecules of any particular Molecule Type from being created.  If the limit is exceeded, 
NFsim just stops running gracefully, thereby potentially saving your computer. 
 
In some cases, however, you may in fact want more than 200,000 molecules of a given type 
and you may have more than enough memory to store several million agents.  In that case, you 
can change the agent limit restriction by running NFsim as: 
 
 ./NFsim […other parameters…] –gml [limit]  
 
where the flag gml stands for the global molecule limit (per MoleculeType).  You might even 
want to set the limit lower than 200,000 so that you can make sure you are not generating many 
more molecules than you expect. 
 
 

e. connected-to syntax 
 
The BioNetGen Language allows you to declare that two molecules are connected, without 
explicitly giving the bond path between those molecules.  For instance, you can define a pattern 
as: 
 
 A().B()  
 
to match all times where A and B are connected by some path.  This syntax is powerful as it 
allows you to overcome the combinatorial complexity of having to specify every single 
combination of bonds where A is connected to B.  Some systems require this syntax to be 
specified correctly.  However, the connected-to syntax is also incredibly dangerous.  Consider 
the actual molecule complex instance here: 
 
 B(a,a!1).A(b!1,b!2).B(a!2,a!3).A(b!3,b)  
 
In this case, the pattern A().B() will be able to map onto this complex four times, once for 
every time you can find a unique A and B in the complex.  Therefore, when you have patterns 
that use the connected-to syntax, NFsim will have to look for all combinations that match.  This 
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can make your simulation run very slow depending on the pattern and the molecular complexes 
that form in your system.  So if you are just using this syntax as a shortcut because you don’t 
want to write out the bonds, don’t!  If you are using it because you genuinely cannot express all 
the combinations that the two molecules might be connected, then by all means, go ahead. 
 
While on the subject of the connected-to syntax, there are a few caveats worth mentioning in 
the way rules are interpreted.  First, consider the following reaction rule: 
 
 A(p~U).B() -> A(p~P).B()   kPhos 
 
In such a rule, the only molecule that is being transformed is A.  The molecule B is only 
providing context for the rule.  In other words, the rule can be read as “A can be phosphorylated 
when it is in some complex with B with rate kPhos”.  Therefore, it doesn’t matter how many B’s 
are connected to A, so long as we have one.  Thus, a complex that looks like this: 
 
 A(p~U,b!1,b!2).B(a!1).B(b!2) 
 
as expected, A will be phosphorylated with rate kPhos, even though there are two places where 
B can match.  These type of “context” checks are actually performed relatively quickly be 
NFsim.  NFsim simply searches, in the same way that molecules are traversed during updates, 
for the first B molecule it can find.  Once it finds one, the B molecule gets mapped and the 
search is over.  Even in very large aggregates, if the B molecule is nearby, the search will be 
over quickly. 
 
On the other hand, consider the following rule:   
 
 A(p~U).B(p~U) -> A(p~P).B(p~P)   kPhos 
 
In this case, both A and B molecules are updated by the rule, and A and B are on separate sides 
of the operator, essentially in disjoint sets.  The rule is interpreted as “every pair A and B 
occurring in a complex where both are unphosphorylated, they can both be phosphorylated with 
rate kPhos”.  This case is trickier for NFsim to handle because instead of searching until a 
single B is found, all matching A().B() pairs must be returned.  NFsim will do this, if you ask, 
but it will affect the rate of the reaction in perhaps a surprising way.  Consider the complex: 
 
 A(p~U,b!1,b!2).B(p~U,a!1).B(p~U,a!2) 
 
Because B in the reactant pattern can be mapped onto this complex twice, and B itself has a 
site that is being transformed by the rule, the rule will effectively be fired on molecule A twice as 
fast.  This is because A will be mapped twice for this rule, and therefore will be phosphorylated 
at a rate 2*kPhos.  Each of the B’s are mapped only once, and so only get phosphorylated with 
rate kPhos.  You have to be careful that this is the behavior you want, particularly when large 
complexes exist.  If there was a complex with many connected A’s and B’s and this rule was in 
the model, then the rate of phosphorylation might occur much faster than expected, not to 
mention NFsim will run much slower. 
 
So again, be careful with connected-to syntax and make sure you know what you’re doing! 
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f. integer state values 
 
The BioNetGen Language was originally designed to use only strings as state values.  This 
means that if you have a state that can have a range of numbers between 0 and 100, then each 
state from 0 to 100 is individually named and you can not write a rule that simple increments 
that state.  You need a rule for every state transition, such as 0->1, 1->2, 2->3 etc.  This is 
tedious and not really necessary.  In NFsim, states can hold integer values and are stored 
internally as integers.  Therefore it is very easy to simply increment the value of a state 
internally.  However, the difficulty is working within the BioNetGen Language in a compatible 
way.  To do so, we have developed a simple syntax that operates in BioNetGen and is available 
only to NFsim (and not BioNetGen’s ODE or SSA simulator) to allow integer state values. 
 
To define an integer state value, simply define a molecule with the minimum and maximum 
integer state that you want, and the special PLUS and MINUS state.  Molecule components 
defined in this way are parsed automatically as having integer state values that can have a 
range of values from the minimum to the maximum numbers declared.  If you add the extra 
integer states between the min and max value, that will work too.  For example, to add a state 
called int that has integer values, declare your molecule as: 
 
 A(int~1~100~PLLUS~MINUS) 
 
Then you can define an increment or decrement rule as: 
 
 A(int~?) -> A(int~PLUS) kPlus 
 A(int~?) -> A(int~MINUS) kMinus 
 
Now the difficulty is that in BioNetGen, there is no NOT operator in molecule patterns.  In other 
words, you can never define the maximum or minimum value that the state can be incremented 
to.  Even though you had defined the range to be 1 to 100 in the molecule declaration, NFsim 
does not track this.  This is a problem, if, for instance, you want the number to range between 1 
and 100 only without going over.  The best way to get around this is by using a local Function 
that uses the scope of a single Molecule (see Chapter 7: distributions of rates reactions for 
more details).  There are a variety of ways to define such a function, but here is one example 
that would limit the value of a state to between 1 and 100. 
 
 

begin observables 
   Molecules Amax A(int~100) 
   Molecules Amin A(int~1) 
end observables 
 
begin functions 
   ratePlus(x) = if(Amax(x)==1,0,kPlus) 
   rateMinus(x) = if(Amin(x)==1,0,kMinus) 
end functions 
 
begin reaction rules 

  A%mol(int~?) -> A%mol(int~PLUS) ratePlus(mol) 
  A%mol(int~?) -> A%mol(int~MINUS) rateMinus(mol) 

end reaction rules 
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This works by defining a local Function that is evaluated only over the scope of the single 
Molecule A.  If it is found that the molecule matches the observable, then the molecule is either 
at the max or min value, and the rate is set to zero.  If the molecule does not match, then the 
rate kPlus or kMinus is used instead and correctly increments or decrements the state. 
 
One last note: NFsim currently does not handle negative integer values, so just don’t use them 
or create a situation where they may be used, as you are not guaranteed to get correct results 
for negative values.  This is somewhat of a historical constraint, as negative valued states are 
used internally to flag other things for the simulator, and cannot be mapped to state labels that 
were originally used exclusively. 
 
 

g. parameter scanning and estimation 
 
NFsim comes packaged with a set of Matlab-based parameter scanning and estimation scripts 
that you can modify for your own modeling needs.  In general, parameter estimation of 
stochastic models is an open research challenge in systems biology and it is not always clear 
how best to do so.  Still, depending on the data and the model, it is possible to run fitting 
routines with NFsim to constrain model parameters.  These included scripts demonstrate how. 
 
The Matlab scripts are located in the NFsim installation under NFtools/NFparamScan.  There 
you will find a function that allows you to run an NFsim simulation on any model with a set of 
modified parameters (runNFsimOnce.m), a script that allows parameter scanning on any 
NFsim model (runParameterScan.m) and a set of parameter estimation scripts that operate 
on the trivalent-ligand, bivalent-receptor (TLBR) system, but that can be easily modified for 
other applications or models (runTLBRfit.m and evaluateTLBRparams.m). 
 
The scripts are well documented, so just open them up in Matlab and follow the instructions for 
modifying them.  The example fitting routine on the TLBR model uses Matlab’s nonlinear, least-
squares fitting method that is available from the Optimization toolbox, so you will need the 
Optimization toolbox for this script to work.  Although you can modify the script to use other 
optimization routines that come with the standard set of Matlab functions, you should try to 
acquire the optimization toolbox for its wider range of options and better fitting capabilities. 
 
 

h. complex-scoped local functions 
 
Local functions may be evaluated on two different scopes: a single molecule or an entire 
complex. Evaluation of complex-scoped local functions can be expensive since NFsim must 
search over all connected molecules to find local functions influenced by a reaction event. To 
avoid this this expense, complex-scoped evaluation may be disabled with the -nocslf 
command line switch. Before using this switch, be sure that the model does not require 
complex-scoped evaluation. If complex-scoped evaluation is disabled in a simulation that 
requires such, then the simulation results will be flawed! 
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Take note that the universal transversal limit (UTL) will influence the accuracy of complex-
scoped local functions. The effects of a reaction event can influence a complex-scoped local 
function that is far removed from the reaction site. Choosing the correct UTL requires care. 
When a reaction fires, NFsim gathers molecules near the reaction site, up to a distance given by 
the UTL. NFsim checks the molecule type of each molecule and determines if there is an 
influence on local function evaluation. If so, then all connected molecules are searched for 
complex-scoped local functions to update. To ensure accuracy, the UTL must be large enough 
that if a complex contains a molecule type that influences a local function, then the distance 
between a reaction site and the closest instance of that molecule type must be less than or 
equal to the UTL. It's wise to compare simulation results with different UTL values. 
Discrepancies between the simulation results may indicate that the smaller UTL was insufficient. 
 
 

i. population variables 
 
Since NFsim represents each molecule as an individual object, systems with large molecule 
counts will require a lot of memory. If memory availability becomes a problem, it may be 
possible to reduce memory usage by representing simple species as population variables. 
Population variables may be declared in the molecule types block by adding the population 
keyword after the molecule type name. Molecule types with the population keyword will be 
represented as discrete-valued population variables rather than individual objects. Population 
molecule types are not permitted to have components, and consequently cannot participate in 
bonds or undergo state changes. Population species can be synthesized, deleted, and 
referenced in global functions. 

For example, a ligand species with large population may be designated as a population variable 
by adding the keyword population following the molecule type definition: 

begin molecule types 
   Lig() population 
   ... 
end molecule types 

If your model is already formulated as a rule-based model, it may be tedious to reformulate with 
population variables. Fortunately, there's an easier solution. BioNetGen 2.2.0+ and later 
includes the action generate_hybrid_model, which transforms a rule-based model into a 
hybrid particle/population model. The hybrid model will have kinetics identical to the original 
model and can be simulated with NFsim 1.11+.  

 

Before generating the hybrid model, you must declare the population species in a  population 
maps block appended to the model file. 
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# original model goes here 
... 

begin population maps 
   Lig(rec) -> FreeLig  klump 
   ... 
end population maps 

 # actions 
 generate_hybrid_model() 

Each line of the block declares one species that will be treated as a population.  Each line 
begins with a species graph, followed by a unidirectional arrow, then a name for the population 
variable, and finally a lumping parameter. Each line may be thought of as a rule that matches a 
species graph and transforms it to a population count. The lumping parameter determines the 
rate of converting un-lumped particles into population counts. The value of the lumping 
parameter can affect memory reduction, but will not influence the simulation accuracy. If in 
doubt, set to a value that is large compared to rate of reactions in the system. It is generally 
sufficient to use the same lumping parameter for all population species. 

The hybrid model is constructed when the action generate_hybrid_model() is executed. 
This action determines all interactions between population variables and the particle objects and 
then writes the transformed model to the file [model]_hybrid.bngl.  Complete 
documentation of this action may be found at http://bionetgen.org. 
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9  walking your system step by step 
 
When you are actively working on a modeling project, (or trying to debug NFsim) it can be 
useful to see exactly what you are simulating.  Often times, you might be simulating something 
completely differently than you expected.  NFsim has a feature that allows you to look at your 
simulation at each simulation step and identify the molecules that exist, their current 
configuration, and the reaction that just fired.  This feature is called The Walker because it lets 
you walk your simulation step by step. 
 
To launch The Walker, simply add the –walk flag when you call NFsim.  You can use any other 
parameters that NFsim takes as well, but note that parameters that control the simulation and 
equilibration times will be ignored. 
 
For example, running this will launch the walker on the simple_system.xml model: 
 

./NFsim_[version] –xml simple_system.xml -walk 
 
The Walker acts like a command line debugger and provides a variety of options.  You will be 
able to equilibrate or simulate for a given amount of time, output the molecules that exist, 
identify the reactions and observables that exist, and even walk with the simulation during each 
Gillespie step.   
 
When you run the Walker, you will be presented with a menu that allows you to choose what 
you want to do.  Select the option you want by entering the correct number for the given option 
and hit enter.  The Walker is easy to use and can be very helpful, but don’t take our word for it – 
go try it for yourself! 
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10  building NFsim locally 
 
It is often useful to build and compile code directly on your own computer.  This tends to 
optimize the program for your particular processor which generally means the program will run 
faster.  The full NFsim distribution comes with all the necessary source code and makefiles to 
build the complete NFsim executable from scratch. 
 
In order to compile and build NFsim, you will need to obtain a copy of the make program and the 
gcc compiler.  If you are a Linux user, you should have both make and gcc.  If you have a Mac, 
you may also have the tools set up.  If not, take a look at Xcode 
(http://developer.apple.com/tools/xcode/) in order to get the developer tools for your Mac that 
you need.  However, if you are a developer cursed with a Windows operating system, you will 
have to take some extra steps. 
 

a.  getting a c++ compiler on windows 
 
To get make and gcc on Windows, we highly recommend that you use MinGW 
(http://www.mingw.org).  It is a set of utilities that allow you to run a minimal set of Linux style 
commands in a windows environment.  The commands provided by MinGW include all the tools 
you will need to build and compile NFsim.  If you have used or are using Cygwin, you might 
already have some of the necessary utilities as well.  You can use Cygwin if you like.  However, 
we strongly suggest that you do not use Cygwin to compile NFsim because the resulting 
executable will run twice as slow and will require the cygwin.dll to run. 
 
MinGW can be a bit tricky to install.  You can find reasonably good instructions at the MinGW 
website here: http://www.mingw.org/node/24.  After installing MinGW, be sure to also install 
MSYS which adds additional tools to your MinGW installation.  You can find details about 
installing MSYS here: http://www.mingw.org/wiki/MSYS. 
 
After you have successfully installed MinGW and MSYS, you will have to tell windows where to 
find the make and gcc programs at the command prompt.  To do this, you have to adjust the 
windows PATH variable.   This will work on both Windows XP and Vista.   
 

1) Right click on ‘My Computer’ (either from the desktop or the start menu) and click on 
‘properties’.  Navigate to the Advanced System Options in Vista and go to the 
‘Advanced’ tab.  In XP, you can go directly to the ‘Advanced’ tab.   Then click on the 
‘Environment Variables’ button.  Be careful here – changing some of these variables 
may make your system unstable.   

2) Look under the User variables and select, or create, the ‘PATH’ variable.  Then click on 
‘Edit’.  This will bring up a window where you can edit the variable value.  To this value, 
add the MinGW/bin and the MSYS/bin directory to the path.  Be sure to include the 
complete directory path.  For example, if you choose the standard install location, this 
would be located at c:/MinGW/bin and c:/MSYS/bin.  Be sure to separate each 
directory with a semicolon.  Once you have done this, accept all the changes and close 
the windows.   

3) To see if it worked, open a command prompt window (go to start->run, then type cmd) 
and type both make and gcc.  Both should return you some sort of message saying you 
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have no targets for make or no input files for gcc.  If instead you get something that says 
it doesn’t recognize the command, then try, try again. 

 
If you installed MinGW and MSYS successfully, you will soon discover that you can not only 
compile, build and make your own c/c++ software, but you can also use a number of linux 
commands at the prompt (which, in our opinion, are much more powerful than dos commands!) 
that let you move, copy, rename, and delete files with the greatest of ease.  Enjoy! 
 

b.  compiling and building NFsim 
 
Once you have a copy of make and gcc working on your computer and on your path, you can 
compile NFsim.  If you want to test your make and gcc installation, simply open a command 
prompt window (in windows, go to Start->run, and enter ‘cmd’) and type either make or gcc.  If 
some message appears from make or gcc, then you’re ready to go.  If instead your computer 
told you that it cannot find the command, then go back and make sure make and gcc are 
installed and on the current path. 
 
Then, while in the command prompt, just cd to the 
[Install_Path]/NFsim_vX.XX/NFcode/ directory, type: 

 
make  

 
and NFsim will compile.  You will be given a new executable (named NFsim) that is 
automatically placed in the [Install_Path]/NFsim_vX.XX/bin directory.  To remake 
NFsim, go to the same directory and type: 
 

make clean 
 
This will undo all that hard work that make and gcc just did.  Typing make again will redo it.  
Depending on the speed of your computer, building NFsim can take some time.  That’s ok 
though because you should only have to do it once. 
 
To recompile the Network code (that is the run_network executables which run the SSA or 
ODE simulations), enter the Network/Network3 directory and type make.  This will build the 
network code and place a run_network executable in the Network/bin directory, which you 
can then move to the main bin directory.  Note that Network3 does not currently support on-
the-fly simulation, so if you need this capability, you should compile the Network2 code instead, 
which is also included.  To tidy up, you can also type make clean. 
 
If you want to actually make changes to the code, take a look in the 
[Install_Path]/NFsim_vX.XX/NFcode/src directory, whip out your old C++ reference 
book and see the chapter for developers. 
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11  developers 
 
NFsim is an open source project and we encourage you to take the time to learn the code and 
make your own improvements, tweaks, and adjustments.  While we cannot guarantee support, 
feel free to send us your technical questions through the feedback page on the NFsim website 
(http://emonet.biology.yale.edu/nfsim).  If you have specific requests for features that you would 
like to see, feel free to contact us with your needs as well. 
 
The source code is packaged with the full distribution of NFsim, and this is the best way to begin 
development.  You can develop, compile, build and test the code in any environment you want, 
but we strongly suggest you consider using Eclipse (http://www.eclipse.org) as your IDE.  
Eclipse is an excellent and free development environment.  It was originally designed for Java, 
but it works great for C/C++ and has plug-in support for many other languages (including a nice 
XML viewer).  NFsim was originally developed in Eclipse, and you’ll notice that all the makefiles 
in the ‘bin’ directory have been automatically generated using Eclipse.  To use Eclipse with 
NFsim, you will need the CDT set of plugins for Eclipse (http://www.eclipse.org/cdt).  The 
instructions for downloading and installing Eclipse and setting up a project in Eclipse from 
existing source code can be found on their website. 
 
Alternatively, you can check out the code directly from the NFsim SVN repository which is now 
available publicly here: https://code.google.com/p/nfsim  
 
The best way to familiarize yourself with the code is to begin with the simple system example 
(located in the src/NFtest/simple_system directory).  This file is heavily documented and will 
allow you to hard code your own model and show you the basic data structures and utilities that 
exist in NFsim.  Try building your own system, and as you do, begin learning the basic data 
structures and functionality of the classes in the src/NFcore directory.  Finally, once you begin to 
work with the code, you will find it useful to have the extended developer documentation that is 
available online: http://emonet.biology.yale.edu/nfsim/pages/support/devDoc/NFsimDoc.html. 
 
And if you do happen to create the next amazing simulator with unheard of capabilities using 
our code base, please let us know!  We will definitely be interested and we’ll want to talk! 
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Appendix 
a1  comprehensive list of command line arguments 
 
Command line arguments can either  
 
-b Set the default NFsim output to a binary format. 

-bscb Block same complex binding throughout the entire system.  This 
prevents intra-molecular bonds from forming, but requires complex 
bookkeeping to be turned on.   

-cb Turn on complex (aka, aggregate) bookkeeping, which is necessary 
for computing Species type Observables and blocking same 
complex binding with the –bscb flag. 

-csv Sets the output format of text GDAT files to an equivalent comma-
delimited file.  This is useful in some cases for parsing output. 

-nocslf Disable evaluation of complex-scoped local functions. This option 
may reduce simulation run-time for some models, but be aware that 
results will be flawed if this option is used with a model that requires 
complex-scoped evaluation. 

-dump Flag that tells NFsim how and where to dump the complete state of 
the system.  This is useful for aggregation or polymerization systems 
where you have to run post-simulation analysis to track, for instance, 
single polymer subunits or average aggregate sizes. 

-eq [time] Equilibrate the system for a set time before the simulation begins for 
the amount of time given.  This operates exactly like a normal 
simulation, except that the simulation time is set to zero immediately 
after the equilibration phase and no output during equilibration is 
generated. 

-gml Global molecule limit, per Molecule Type, that is allowed before an 
error is thrown.  This option is designed so that simulations stop 
before too many molecules are created, use up all your system 
memory, and possibly crash your operating system.  This can 
happen, for instance, if there is a molecule generation rule that is not 
functioning the way you think it should.  The default value is 
100,000. 

-help Display a useful help message. 

-logo Use this flag for all your simulations if you like to admire NFsim as 
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much as we do. 

-notf Sets the output of Observables to be Not On The Fly, meaning that 
Observable counts are not maintained throughout the simulation, but 
are instead recomputed just before simulation output.  Setting this 
option allows simulations to run faster if there is significant 
simulation time between output steps.  It cannot be set if you are 
using functions as functions rely on having updated Observable 
counts at any point in a simulation. 

-o [filename] Set the name of the output file, which can include the output file 
location, to the given filename.  If there are spaces in the filename, 
be sure to enclose the filename with double quotes.  The default 
filename is “[model_name]_nf.gdat” 

-oec “Output Event Counter” will write the accumulated number of events 
(even null events) that have fired during the course of the simulation 
to the standard .gdat output file. 

-ogf Output the value of global functions at each output step to the 
specified or default output file.  

-oSteps [steps] Used in conjunction with the –sim flag, this sets the number of times 
you want to produce output.  The default value is 10. 

-rnf Invoke a simulation from an RNF (Run Network Free) script file. 

-rtag [r1,r2…rN] “Reaction Tag” - Use this flag to tag one or more reaction rules in 
the system for output to the console during simulation.  Each time a 
tagged Rule is used to generate an event, an output message is 
generated listing the id of the rule that fired together with unique IDs 
of the molecules that were updated by the rule.  Molecules that are 
part of the context of the reactant pattern are not listed, nor are 
molecules that were created by the rule.  Rules are identified by a 
unique ID number, which typically counts rules in the order that they 
were listed in the BNGL file.  If you are unsure what the ID of a 
particular reaction is, run NFsim in verbose mode (using the -v 
flag), and at the end of the simulation, all reactions are listed with 
their corresponding ID.  This flag is useful for debugging a model or 
for single molecule tracking.  Generally this flag is used in a linux 
environment where the standard output of NFsim can be piped to a 
file that can be filtered for particular events using grep, and used for 
further analysis. By default, no reactions are tagged. 

-seed [integer] Provide a seed to NFsim’s random number generator so you can 
reproduce exact trajectories. 

-sim [time] Simulate the system for the given amount of time.  If this flag is not 
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given, the default simulation time is 10 (in whatever units the model 
is defined in). 

-ss [filename] When this flag is passed, NFsim will generate a text file listing all the 
final molecular species present after the specified NFsim simulation 
in BNGL format, where the species declaration is followed by the 
number of that particular species present in the system.  The 
filename provided is optional: if it is not provided, the file will be 
named ‘[system_name]_nf.species’.  Importantly, note that the 
species are not necessarily unique!  A particular molecular species 
may appear several times in the list where the bond labels are 
permuted.  It is expected that BioNetGen or other software will 
perform the appropriate unique species analysis if needed.  The 
purpose of this functionality is to support restarts through BNG in 
future releases without having to rely on RNF scripts. 

-utl [limit] Set the Universal Traversal Limit to the given integer value.  This 
value controls the depth of the molecule traversal when searching 
for molecules that are affected by firing a rule.  Set this too low, and 
you’ll get simulation errors which are usually caught.  However, the 
higher this is set, the slower NFsim will run.  By default, the traversal 
limit is set to the size of the largest pattern in the model, which will 
always allow correct results. 

-v Set verbose output, so that extra text is spit out while NFsim runs.   
This is particularly useful when you are first building a model or if 
NFsim gives an error when it is reading the generated XML file. 

-version Print the version number of the NFsim binary that is running. 

-walk Turn on the simulation debugger by walking your simulation step by 
step.  This runs your simulation in an interactive mode where you 
control how large the simulation steps are and when Observables 
are outputted to file. 

-xml [filename] Tell NFsim which XML file to run.  XML files can be created from 
BioNetGen manually by including the writeXML(); call into your 
BNGL file or automatically by calling the simulate_nf(); method. 
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a2  predefined operators and functions for expressions 
 
Below is a complete list of the operators and mathematical functions currently accepted in the 
BioNetGen Language and handled by NFsim.  See chapters 6 and 7 for additional information 
on defining functions in BNGL.  Remember that functions can also be defined in the parameter 
block.  NFsim uses the muParser (http://muparser.sourceforge.net) library to handle 
mathematical expressions, which include some operators not listed below.  Those operators can 
be manually inserted into the XML file that NFsim reads.  However, only the operators 
supported below are handled by BioNetGen and have been tested.  We also include the 
precedence of the operators when evaluating the expressions.  The higher precedence 
operators are evaluated first. 
 

Binary Operators 
Operator Meaning Precedence 

^ raise X to the power Y 5 

/ division 4 

* multiplication 4 

- subtraction 3 

+ addition 3 

> greater than 2 

< less than 2 

>= greater than or equal to 2 

<= less than or equal to 2 

== equals 2 

!= not equals, traditional style 2 

~=  not equals, matlab style 2 

&&  logical AND (note: converted to “and” in 
the XML so it can be handled by 
muParser) 

1 

||  logical OR (note: converted to “or” in the 
XML so it can be handled by muParser) 

1 
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Predefined Functions 
Function Meaning 

sin(X) the sine of X, where X is in radians 

cos(X) the cosine of X, where X is in radians 

exp(X) raise e to the power X 

log(X) the natural logarithm of X (note that muParser 
interprets log(x) as log base 10.  but never 
fear, because NFsim internally converts 
log(x) to the natural log for muParser so that 
results are consistent between the parameter 
block of BNGL and NFsim. 

abs(X) the absolute value of X 

sqrt(X) the square root of X 

if(X,Y,Z) if the condition X evaluates to true, then give 
the value Y, else give the value Z.  Zero values 
are interpreted as false, and positive values 
are interpreted as true. 

 
 


